
AD A122 743 JOURNAL OF COUPITERS ELIECTIE ATICLES)(U) FOfREIG
TECHNOLOGY DIV IIEU4T-PATilSliN AFI ON 0 LIU IT AL.
14 OCT 62 FTO-3O(ES)I(309-82

UNCLASS I F IE F/O /2 NL

E ll ENOMEEl
1111111EE,

IImmlllllllll

Loi 1,=2
IMII 1.0 1 1.8

11 11 11111_____

1U

1111.25 111 .4 I~ .

MICROCOPY RESOLUTION TEST CHART
NAIONAL BUREAU OF STANOARD - 963 -

4

FTD-ID(RS)T-0369-82

FOREIGN TECHNOLOGY DIVISION

"q

4%0A

JOURNAL OF COMPUTERS

(Selected Articles)

O TIC
DEC 2 819820

E

Approved for public release;
-distribution unlimited.

.4 ~82 11

FTD-ID(RS)T-0369-82

EDITED TRANSLATION

FTD-ID(RS)T-0369-82 14 October 1982

MICROFICHE NR: FTD-82-C-001317

JOURNAL OF COMPUTERS (Selected Articles)

English pages: 101

Source: Jisuanji xuebao, Vol. 4, Nr. 5, 1981,
pp. 321-371

Country of origin: China n

Translated by: SCITRAN - -"

F33657-81-D-0263
Requester: FTD/TQTA
Approved for public release; distribution

unlimited.

THIS TRANSLATION IS A RENDITION OP THE ORIGI.
MAL FOREIGN TEXT WITHOUT AMY ANALYTICAL O

EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BY:
ADVOCATEOON ItPL I10ARE THOSEOP THE SOURCE
AND DO NOT NECESSARILY REPLECT THE POSITION TRANSLATION DIVISION
OR OPINION OP THE POREIGN TECHNOLOGY DI. FOREIGN TECHNOLOGY DIVISION
VISION. WP.APS. OHIO.

FTD -ID(RS)T-0369-82 Date 14 Oct 1982
Ii'3 "

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc.
merged into this translation were extracted
from the best quality copy available.

TABLE OF CONTENTS

Graphics Disclaimer .. i

CZXT-0l3 and Some Problems in Its Implementation, by Liu Guo-Heng 1

CZXT-013: A Hierarchical Operating System, by Zhang You-La, Jia Yao-Mei 12

The Design of the CZXT-013 JCL (JOB Control Language) and the
Implementation of JOB Control, by Chan Hua-Ying, Lu Yu-Zhen 32

The JOB Management in CZXT-0l3, by Jin Qu-jie, Zhen Zeng-Zhen 49

Management of Virtual Storage on CZXT-013, by Fan Ben-Kui 63

Input/Output Management of CZXT-013, by Li Zhi-cheu, Gu Yu-Qing,
Zheng Li-jun and Zhao Wen-qin .. 81

CZXT-013 Testing and Debugging, by Liu Guo-hen and Cai Chun-lei 93

Ii ii

CZXT-013 AND SOME PROBLEMS IN ITS IMPLEMENTATION

Liu Guo-Heng
Institute of' Computing Technology,
Academia Sinica

ABSTRACT

In this paper, the function and structure of CZXT-013, /321*
which is an operating system on the computer 013, are
described. Some problems in CZXT-013 design and im-
plementation, such as resource management, process
communication and so on, are discussed.

The resident mainframe 013 Computer is a medium-sized general

purpose computer suitable for scientific computations. It can

process approximately 2 million instructions per second and is

equipped with a dynamic page address translation mechanism. The

main memory consists of 128 K words with 48 bit word length. Its

byte multiplexer channel and block multiplexer channel are connected

to normal I/O devices and magnetic disk drives respectively. There

are 14 disk drives with a capacity of 850 K words per drive, the

* average access time being 800 millisecond.

Taking into consideration our technical level and experience

in operating systems research as well as the current status of

* our computer hardware, we have decided upon a design principle

of being practical, plain, reliable, efficient and with room to

spare. Under the premises of satisfying the general requirement

of scientific computation, we adequately controlled the scale of

* the system and made it into a reliable and practical system.

Numbers in margin indicate pagination of original foreign text.

Received 5 August 1980.

J1

I. GENERAL FEATURES OF THE SYSTEM

The CZXT-013 is a multi-programming batch processing operating

system oriented for scientific computations. It can support 5
detached and 2 online jobs simultaneously. In order to correlate

the jobs so as to utilize the system resources in a balanced and

highly efficient way, the system is scheduled on 3 levels. Job

scheduling is high level scheduling which selects suitable jobs

from the job queuefor processing. On the medium level, there is main
storage scheduling which determines dynamically for the various

jobs the number of pages in the main memory. On the low level is

process-scheduling, which distributes the CPU to the various pro-

cesses. The system provides independent virtual storage page

space to each job in the operating state. The maximum address space

of each job is 1 million words. Each page contains 512 words and

may be saved or deleted by the page from the main memory. While

designing the system, we foresaw the problem of speed mis-match

between the ability of the disk drive to provide page space and

the demand on page space by the CPU during data processing, but

we still decided to adopt the virtual storage method so as to

learn how to manage a virtual storage system. However, we have

incorporated certain measures to reduce the speed mis-match pro-

blem to our best ability. In order to shorten the job 1/O waiting

time, increase the job I/O flexibility and decrease the number of

I/O devices,we used a pseudo-offline mode of 1/0 operation in the

system. File processing is also provided to facilitate user data

access. In view of the limitations of the ex~ernal storage devices,

only some basic functions are provided in the file system. 32 logic

devices are provided by the system to the user so that the user

may conveniently utilize the files and external devices and so that ./322

user program will be sufficiently independent of the files and

actual devices. In user programs, read and write to files and

peripheral devices are treated as read/write to certain logic

devices, and the correspondence between logic devices and the files

or peripheral devices may be delayed until job execution time when

it will be established through user instructions.

2

This system is one oriented toward scientific cbmputations

with primarily batch processing; hence the job control language

provided by the system emphasizes the special characteristics of

scientific computation and the need for organizing operational

documentation. To lighten the load of online user operation

(currently, our users are not yet familiar with keyboard operation),
the system allows online jobs to have operation documentation.

An online user may choose between manual or automatic operation for

job processing as well as mixing the two modes. In order to pro-

vide relatively complete online service for the users while avoiding

excessively lengthy programs explaining the commands, a service

program library is established in the system, which also facili-

tates the augmentation of system functions.

Three concepts are employed, or rather 3 design tools are used,
in the structural design of the system, i.e., hierarchy, module

and process. The employment of these 3 concepts makes the system
structure clear, reliable and orderly.

In order to realize the full function of the system, we

augmented CZXT-013 altogether 8 times. The augmented programs on

each occasion form one heirarchy, hence the structure of the system

consists of 8 hierarchies. Some of the hierarchies are further

divided into grades. There is a semi-ordering uni-directional

dependence among the hierarchies. The system programs within

each hierarchy are further divided into modules with unique and

precise functions. A uniform format for calling and communicating

among the program modules is also stipulated. The modules in the

kernel hierarchy are realized in the primary language. Calling

of the primary language is realized through the "transfer" instruc-

tion. The messages are transfered through the accumulator. The

modules in the other hierarchies operate as processes. Processes

interact with the exterior through calling the primary language

- - provided by the kernel hierarchy. One important characteristic

of an operating system is its concurrence. The concept of "process"

is introduced to emphasize the concurrence of CZXT-013. The processes

in the system are divided into one system family and several job

3

families. Job family processes are a group of processes active

around a job in operation. They appear and disappear with the

creation and deletion of the job. The number of job families is

the same as the number of jobs in operation status.

In order to facilitate system operation and to reduce the
total number of processes in the system, a family of permanent

system processes is established when the system is first turned on.

This family of processes is oriented toward the whole system and

does not serve just one job. The co-operative relationship between

processes is realized through process communication. The communi-

cation format in our system consists of signal volume operation and

message buffer, both realized through the related primary language

provided by the kernel hierarchy. The unified control of communi-

cation makes it easier to manage and test the communication between

processes, hence making it more reliable and secure.

II. A FEW PROBLEMS IN PRACTICE

Quite a few problems were encountered during the design of

the CZXT-013. Some design loopholes were also discovered during

the actualization process. Some of these problems have been success-

fully solved by us, but some of the solutions have not been satis-

factory. In the followinp,we shall discuss some of the problems

in resource management and process communication and introduce

some of our solutions.

1. Centralized management of shared resources

We know that the main purpose of designing an operating

system from the viewpoint of resource management is to share the

computer among many users so that the resources of the computer

system may be utilized very efficiently. As pointed out by

P. Brinch Hansen: "There is an economical necessity in the sharing

of computer equipment and the purpose of the operating system

is to make this sharing a practical reality." The first thing

encountered in the realization of resource sharing is how to

manage the shared resources. The most natural and effective

method for the computer as a data processing tool to manage

shared resources is to treat the shared resources abstractly

as a set of data. That is, to represent the resources as data

and to reduce the management of shared resources such as distri-

bution, retrieval, etc., to a set of operations on these resource /323
data. The processes of shared resources must operate separately

on this set of data.

When a distributed method 6f management is used, in order to

guarantee the uniformity and integrity of resource data, each

process is required to operate on the resource data during the

corresponding exclusive steps. This not only makes it necessary

for the resource sharer to go through elaborate operating pro-

cedures, but also introduces many undesirable factors into the

system: First of all, it is difficult to guarantee the reliability

of the system. If only one sharer operates unsuitably on the

resource data, the normal operation of the whole system will be

affected. Secondly, it is inconvenient to scrutinize the "privilege"

of the -harer, thus affecting again the security of the system.

Furthermore, by exposing the resource data in front of each sharer

and letting them operate on the resource data individually, it

becomes very difficult to modify the resource data, thus damaging

the maintainability of the system. Therefore, a centralized manage-

ment method is used in CZXT-013 for managing shared resources:

only a special manager is responsible for maintaining the resource

data of sharable resources. It provides the sharer the necessary

service operations. The operations of the sharer can only be

carried out by the manager. As an example, this centralized

management method is used in such sharable resources as the main

memory storage, the magnetic disk drive and I/0 ports. This has

not only improved the reliability, security and maintainability

of the system, but also simplified the system programs.

54I-

Although the structural concept of "management program"
is not explicitly used in the management of sharable resources,

the thinking behind this type of centralized management of

sharable resources is basically the same as that behind management

programs. It helps to improve the function of the system.

2. Prevention of deadlock In resource management

In order to improve the rate of resource utilization, the

dynamic allocation method is often used in resource management.

A deadlock may occur when dynamic allocation is applied to resources

which cannot serve several processes simultaneously and which cannot

be retrieved by force by the system. Only when the amount of

resources is sufficiently large or when the number of requests

by jobs or processes is limited can we avoid the deadlocks produced

by severe competition. The number of system resources (such as

hardware) is limited, and can never be sufficiently large for a

multi-programming system. It is often un-economical and impractical

to increase the amount of resources to the level of being sufficiently

large. Thus,prevention of deadlock should not be neglected when

resource allocation strategy is being considered. There may be

many waya to define deadlock, but we consider the following to be

adequate: "Deadlock is a state in which two or more processes

wait indefinitely for a condition that can never be realized."

The necessary conditions to produce deadlock in resource management

may be summarized as:

(1) A certain part of the resource can only be used by

one process, i.e., its utilization is exclusive.

(2) The resource cannot be scheduled in a non-deprivable way,

i.e., only the user can release the resource which cannot be
retrieved forcibly by t -e syster

(3) A group of processes wait for the resource cyclicly,
i.e., some processes in this group have already occupied part of

the resource and they are waiting for the release of the resource
by other processes so that they may obtain the remaining resource. -

6

The resource allocation strategy of CZXT-013 is determined

according to this kind of analysis. Management of the main memory

is divided into the page allocation method and the non-page

allocation method. Their objects of management do not overlap.

Among these, the main storage pages (at least most of them) may
be retrieved by force and therefore deadlock will not be produced

because of competition for them. The non-page allocated main

storage is non-deprivable, and hence the first 2 necessary condi-

tions both hold. To prevent deadlock, we must make sure that

condition (3) must fail to hold. The most convenient method to

destroy condition (3) is to avoid having the requesting process
wait for the resource. However, this must result in increasing

the amount of non-page allocated main storage, so that the need

for procedure control blocks, procedure work space and message

buffer may be amply satisfied.

When there are few jobs being executed and only ;a small number

of processes, the main storage will be wasted. We have adopted

a method of modifying the character of resource allocation to

avoid both deadlock and waste of main storage. When a job is

being established, a part of the requested main storage pages

is used as the control block and work space for this family of

processes, thus decreasing the amount of non-page storage requested.

Although this part of the main storage pages cannot be forcibly

retrieved by the system, it is small compared 1-o the total number

of pages that can be forcibly retrieved (e.g. main storage pages

supporting vitual storage). Alsothere are special programs in ./324

* - the system to control the number of pages in main storage used for

virtual storage, hence,deadlock will not develop due to page

allocation. Thus~other than the fixed number of storage units

used to establish the procedure control blocks and work area of

system procedure family as long as the buffer units needed by the

message buffer can be guaranteed. We may consider the storage

to be sufficiently plentiful and no deadlock will occur. Veryi little main storage is used by the message buffer; only 14 units at
r a time. In this way, only a small p.-ce needs to be paid to avoid

the deadlock arising from competition for main storage.

7

The al location characteristic of the disk sector area used for

1/O port also satisfies the first 2 necessary conditions for pro-

ducing deadlock, but the number of port areas is sufficiently large

to satisfy the need for normal operation of the jobs so no deadlock

will occur. However, system deadlock may still be caused if a

detached job outputs and requests for disk sector areas indefinitely.

For this, we adopt the method of limiting the actual length of

port file. When a detached file exceeds the allowed length (256

sectors), the system will automatically output it in batches while

retrieving the port areas for other processes to use.

3. Prevention of loss of resources

We discover that a problem worthy of attention during the

system realization process is the prevention of loss of resources.

Commonly in resource allocation, the system usually only records

unallocated resources while users of resources already allocated

are no longer recorded. This is especially true when the number

of resources is large and users are many. A loophole may thus be

created when a process fails to release voluntarily its resources

during an abnormal termination. A more serious situation arises

when a procedure is forced to terminate after its requested resources

are allocated, but before they can be recorded in the appropriate

data base. A loss of resource will result in both cases. This

problem must be properly treated in order to make the system less

vulnerable and more error-tolerant when the mainframe's reliability

is low.

To prevent resource loss by recording the requesting processes

during allocation will result in wasting large amounts of space

and increasing the overhead of the system to an intolerable degree.

An economical and simple method must be formed to prevent the loss

of resources. We have not yet found a unified and general solution

during the process of treating this problem. Only some specific

measures for solving practical problems have been adopted.

Registration of allocated resources into tables of the same form

will be done by the allocator; temporary registration is established

8

by the system in the PCB of the process when tables of different

forms may be involved. Because of series of measures taken by

us, we have basically insured the complete retrieval of system
resources whether the job ends normally or abnormally.

4. Problems of process communication

Another problem investigated by us while programming the

CZXT-013 is the effect of process communication on system security.

As mentioned above, we introduced processes in the structural design

of the system, and classified processes into one system family and

several job families. The control and entrusting relationship

between processes is realized through process communication

which takes place not only among processes within the family, but

also between the system family and a job family.

Two means of communication are provided by the system. One
is a low level primary language communication for signal volume

operation. This is an implicit communication among processes,as

the operator does not know clearly the dialogist; the other is a

high level primary language for communication message buffer which

is explicit communication with the operator knowing clearly the

dialogist. The former is simple to realize, has high efficiency,

low message volume and poorer security, while the latter has

high message volume, more security, but higher overhead. No

problem will arise during normal system operation as long as the

logical relationship in the design is correct. However, once an

accidental event occurs in a job, causing the abnormal cancellation

of this job family, the system may be paralyzed due to the destruc-

tion n-f~ a normal communication relationship. For example, if a

procedutre Is cancelled after a P operation on a public, exclusive

signal, but before a V operation, then other operators may be

indefinitely blocked. Similarly, in high level communication,

there may also be phenomena of one or several processes waiting

indefinitely for messages from a cancelled process. To overcome /325
this deficiency, we imposed some limitations on process communi-

cation and also made some extensions to the communication.

II 9

Firstly, we limited the use of signals. Signals can only be

used within the family. No public signal between different

families is allowed. This not only capitalizes the advantage of

signal communication within limits, but also avoids its possible

problems. One point needs to be clarified. A public signal may

be used by the kernel hierachical program, because this problem

has been considered in system design. The asymmetry thus produced

may be avoided because (SMO segment) "System must complete", segment

is installed. Furthermore, when an error occurs in the kernel

hierarchy, the error level is higher than those which occur in

non-kernel hierarchy programs. The met-hod of treatment will also

be different.

Secondly, we imposed some restrictions on the use of message

buffer communication and also added some extensions to the means

of communication. When communications which require replies occur

between processes of different families, the system will make a

record. When the process for the job family is cancelled, if the

process of the system family has not yet issued a reply, then the

cancellation will be delayed until such time as a reply is received.

If the job family process has not issued any reply to the system

family process, then a "remedial" message will be issued by its

parent process. This method is used to overcome the asymmetry

of communication so as to avoid the damage that an abnormally-

terminated job may bring to the system.

III. CONCLUSIONS

After adjustment and testing, CZXT-013 has now entered the

usage stage. Test results indicate that the original design goals

have basically been achieved and that the system functions can

satisfy the general requirement for scientific computations and

operate stably. The system should require further improvement.

Currently, an important factor affecting the operation of the system

with high efficiency is hardware stability, disk volume and disk

speed. This problem is being solved.

10

CZXT-013 is researched and developed by the Computing

Technology Institute of the Academia Sinica. Several comrades

from the 9th Institute of Beijing also participated in this work)

which has also been supported by some comrades from the Computing

Center of the Academia Sinica.

.1 11

CZXT-013: A HIERARCHICAL OPERATING SYSTEM

Zhang You-La Jia Yao-Mei

(Institute of Computing Technology, Academia Sinica)

Abstract

CZXT-013 is a batch-processing operating system,
capable of handling eight jobs simultaneously. This
paper describes the architecture design for the system,
i.e., the design objectives and the tools (hierarchy,
process and modularity) which are needed to realize the
objectives. The kernel primitives and their design
considerations are illustrated in detail, the function
of each process, process control and communication are
also described. The experiences gained in the course
of design are presented at the end.

I. Introduction

CZXT-013 is a batch processing operating system. It allows at

most 8 jobs to run simultaneously in the computer. The 8 jobs are:

job 0 is a system job. It is responsible for managing the system's

total input/output (I/O) devices, the internal storage scheduling

and entering of jobs; job 1 is online service job, which enables the

user on the monitoring console to request for system service through
"service" commands, such as writing file marks on tape sections,

writing file headers on tape, compiling source programs, etc.; job

2 is an online job which enables the user on the console to control

the execution of his job through a series of online commands; jobs

3 through 7 are batch processing jobs which run jobs through the

operation document.

In order to improve reliability and flexibility, 3 structural
design tools have been used in CZXT-013. The first is process; the

Received August 5, 1980

12

second is modularization which means that the system program is divi-

ded into many modules, each of which serves a particular function.

The modules can be individually programmed and tested. Communica-

tions among the modules follow a uniform interface. The third is

hierarchy. The modules and processes are divided into several uni-

directionally dependent hierarchies according to their functions.

The common feature of the three tools mentioned above is the

localization of global problems. However, each tool achieves locali-

zation from a different angle. The process divides the complete pro-

cess of CPU activities into many small independent units; modulari-

zation divides a large, complicated program into many independent,

small mod cs; hierarchy divides the whole system into several uni-

directionally dependent hierarchies. In this way, to understand the

whole system is to understand each process, each module and each

hierarchy and to program and test the whole system is to program and

test each process, each module and each hierarchy. This makes it

easier to understand the whole system, more convenient to test it,

and also easier to make local modifications. Besides, loops are

reduced by the hierarchical structure and so is the number of errors,

hence the improvement in reliability.

We divide CZXT-013 into 8 layers of hierarchy. The 0 layer is

the central layer, called the kernel. The other 7 layers are pro-

cesses. The kernel and each process are sub-divided into modules.

We shall describe their individual functions and installation below.

II. The Kernel /327

The kernel is the bottom-most heirarchy of the system. It is

the direct extension of the "base machine". Its function is to pro-

vide a good environment and create the necessary conditions for the

normal operation of the processes, which means that the process runs

on the virtual machine extended by the kernel. The kernel consists

of some primitives and interrupt processing programs.

13
2!

1. The sub-divisions of the kernel and their functions.

The O/H hierarchy formed by the kernel is sub-divided into 9
sub-divisions, as shown in Figure 1.

Level 0 XTIMHG

(high frequency clock)

Level 1 XCPUSI

(CPU scheduling)

Level 2 XP XV XVV
(P operation) (V operation) (broadcast V operation)

XENTRY XEXIT XW XN
(SMC entry) (SMC exit) (W operation) (N operation)

Level 3 XB
(FSB chain)

XALOC XFREE XG XJ
(non-page (non-page (page (page release)

allocation) region allocation)
release)

XGP XJP
(page table (page table release)
request)

Level 4 XCREAT XSTART XSTOP XDESTR
(create) (start) (stop) (destroy)

XSEND XSENK XSENDF XSENWA
(send message)(send kernel) (send family) (send and wait)

XANSR XANSRF XRECEI XWAIT
(send answer) (answer family) (receive (wait)

message)

XQUE
(error report)

Level 5 XTIMLW
(low frequency clock)

14
- - --q- - - - -

Level 6 XIOCS
(I/O start control)

Level 7 XL XM XK XH XU XSAVE
(address (monitor) (trace) (hang) (unlock (save
check) process) status)

Level 8 INTERO INTER1
(0 level interrupt (1 level interrupt
processing) processing)

Figure 1. Kernel subdivision.

Level 0 is the high frequency clock primitive XTIMHG. It is

responsible for managing the hardware fast clock. The fast clock

after XTIMHG extension is capable of implementing the process time

slice.

Level 1 is the low level scheduling primitive XCPUSC. It is

responsible for allocating the CPU to each process. Through XCPUSC,

CPU becomes many virtual CPU's so that each process will regard it-

self as processing a CPU.

Level 2 is the low level communication primitive and the pro-

cessing of the "System Must Complete segment" (SMC segment). The

treatment of SMC segment will be introduced at the end of this /328

section, and the design background and usage of the low level
communications primitive will be introduced in the next section.

Level 3 is the allocation of real storage other than the fixed

storage, the rest of the 130K main storage of Model 013 computer

is the dynamic user area. This is divided into paged region and non-

paged region according to usage. The paged region is allocated by

page (each page 512 words). It is used in user program data area,

system I/0 buffer area, etc. The non-paged region is allocated

according to number of units. It is used for process control block

15 4..

(PCB), message buffer, process work space, etc. All free non-paged

storage blocks (FSB) are linked together as an FSB chain. Process

requests for a non-paged area pass through the XALOC primitive. The

primitive finds a large enough FSB from the FSB chain and allocates

it to the requester. The release of the non-paged area is done by

the XFREE primitive. The request and release of the paged area are

done by XG and XJ primitives. We have also set up the XGP and UJP

primitives to provide the reservation and release of designated

pages. When the high level process has chosen a job for execution,

and needed page table area to allocate virtual space for the job

(page table area position is fixed), if the page in the page table

area is already occupied, then the high level process must reserve

the needed pages, and release them through XJP. After the extension

of this level, the internal storage becomes sufficiently numerous to

be used by the process.

Level 4 are the process control and high level communication

primitives. The design background of these primitives will be intro-

duced in the next section.

Level 5 is the low frequency clock primitive XTIMLW. This primi-

tive extends the hardware slow clock to a job alarm clock (to record

job run time), a process alarm clock (to recoed user process run

time), a delay alarm clock (to resume operation after sleeping for

so many seconds), etc. to satisfy the timing needs.

Level 6 is the 1/0 start-up control primitive XIOCS for start-
ing, stopping and checking the exchange channels and disk channels.

External device channels then become logic channels after this

extension.

Level 7 is the scheduling primitive. It facilitates user

scheduling of processes, such as the XL primitive for processing

address check, the XM primitive for monitoring, the XK primitive for

tracing, etc.

Level 8 is interrupt management, namely the level 0 interrupt

management INTERO and Level 1 interrupt management INTER1. Its job

is to manage interrupt or to convert the interrupt signals into

messages and send them to the appropriate processes. After this

level of extension, the concept of interrupt disappears from the

hardware machines. Presented to the processes are then messages.

The process understands the working conditions of the channels and

other hardwares through the messages.

2. The main consideration in kernel design.

The kernel is the center of the system. Its efficiency has a

deciding effect on the efficiency of the whole system. Its correct-

ness is the key to the correctness of the whole system. Hence the

structure of the kernel must be considered very carefully. Two

important measures are adopted in the design of the kernel, namely

modularization and the concurrence of the primitives. Three mean-

ings are included in the term "modularization." First is the unity

of function. The whole kernel is composed of many modules, each of

which consists of only one function. Each module is either a single

primitive or a interrupt processing program. Second is modular

independence, i.e., each module may be independently programmed and

tested. Each module has a set of general registers (accumulator,

address modification register, PSW register, etc.) and no module

of interface. The kernel primitives may be called not only by pro-

cesses but high level primitives may also call any low level primi-

tive, i.e., nested call is permitted. Calling of kernel primitives

is made through the "advance manage" (AM) and "retreat manage" (RM)

modules. These two modules are not listed in the hierarchy struc-

ture in Figure 1. Nested calling messages are all transmitted

through 2 accumulators.

Apparently, modularization clarifies the structure, making it

easy to understand, modify and test, but the overhead of the system,

17

- W'- - - -. .- ---- mlm - mira - -m n ~ mm~ |m

both in time and in space, is increased. More than a hundred instruc-

tions are dynamically executed each time the kernel calls the AM

and RM modules. More importantly, in order to save the contents of

the general registers during nested call, 4 status retention areas

and a separate system status retention area must be opened in the

PCB table of each process. This will extend the length of each PCB

to 40 units.

Another important measure in kernel design is the introduction /329

of concurrence in the primitives. The actions of the kernel primi-

tive may be seen as the extension of the actions of processes.

Therefore the concurrence of the process is also extended into the

kernel. For example, 2 processes may enter into the XALOC primitive

simultaneously and request for internal storage simultaneously. Of

course, not all primitives permit concurrent execution. Some primi-

tives remain in serial operational, e.g., all the le'rel 2 and level
.6 primitives. The primitives are allowed to work under "unlocked"

or "looked" conditi-on to realize the concurrence or serial-ness.

Introduction of concurrence into the kernel is advantageous in

improving the concurrence of the whole system, especially in short-

ening the real time response time and in speedy response to interrupt

under realtime conditions.

However, the problems that are produced due to concurrent opera-

tion of processed will also appear in the kernel. First of all,

conflict may occur in the primitives when 2 processes enter the

kernel primitive simultaneously. The method we use to solve this

communication problem is to adopt P, V operations, in the same way

that the direct communication between processes is solved. Another
problem is that it is easy for the system to become insecure. For

example, when a process requests for internal storage area through

the XALOC primitive, as this primitive is in the process of modify-

ing the free storage chain (access to the chain is guaranteed to

be exclusive with P, V operations), the free storage chain will be

locked forever if the process should be interrupted and then stopped

or cancelled for sane reason. The method used by. this system to

solve this problem is to call such segment an SMC segment (System

Must Complete Segment), namely those program segments which will

cause insecurity when the process is stopped or cancelled during

execution. We set up an SMC flag in the PCB of each process. The

flag is non-zero when SMC is entered and zero when completely exited.

The process can only be cancelled when the flag is zero. XENTRY and

XEXIT are the primitives to set and clear the SMC flag.

III. Processes

1. The hierarchical structure of processes

Hierarchies 1 through 7 of our system are all system-defined

processes. These processes are arranged according to the principle

of unidirectional dependence. The hierarchical structure of the

process is shown in Figure 2.

Hierarchy layer 1 are device management processes. They manage

respectively the various external devices provided by the 013 com-

puter. "Console CRT" and "Error Print" processes report to the

operator, system operating status from the console CRT and system

printer respectively. "User CRT" process reports job execution

status to online user on the user console CRT. "Disk manager i"

process is responsible for managing the ith disk drive (i = 0,.-. ,3).

"Disk controler" process optimizes the disks. "Port allocator"

and "port retrieval" allocate and release the I/O parts. "Tape i"

(i = 0,1) manages the ith magnetic tape drive. "Online Print i"

and "Offline Print i" manage respectively the ith channel cnline and

offline printer. "Online input" and "offline input" processes

manage online and offline paper tape input. "Light pen display",

"Electrostatic" and "Punch" processes manage respectively the corre-

* sponding device.

Hierarchy layer 2 is storage management. "Page manager" pro-

I

cess is responsible for internal and external page exchange.

"Central Scheduler" process decides on the allocation strategy of

internal real pages.

Hierarchy layer 3 is file management. The task of the "Basic

files" process is to transmit file messages between the buffer area

and external media while "Read," "Write" and "File Supervisor" pro-

cesses transmit file messages between the internal storage and the

buffer area. The "file supervisor" process is provided to create

file supervisor for jcbs. The file supervisor includes job name,

job type, operational documentation, start time, status, etc. The

"Catalog" process manages file catalog and operations on the cata-

log, such as creation, open, close, delete files, etc. The "header"

process reads and writes file headers on magnetic tape. The "offline

output controler" process controls the offline output of files.

Hierarchy layer 4 is user process (or subsystems such as com-

pilers) and job control. The "user command interpreter" process inter-

prets and executes user caunmands. The "Job controler" process

receives commands and processes various events of a Job.

Heirarchy layer 5 is job creation and scheduling. "Paper tape /330

header" and "Job creation" processes input all the key-punched

messages of an offline job (documentation, program and data) to the

I/O part and place the job in a ready state. The "High level

scheduler" determines whether to permit a user console inline job

to enter the system as well as selecting a job fran the offline Job

queueon disk for execution in the internal storage. Resources will

be allocated to all Jobs and retrieved when the job ends.

Hierarchy layer 6 is system job control. The "Console keyboard

monitor" and "user keyboard monitor" send commands from the console

keyboard and user keyboard to the relevant process. The "system

control" and "Console cammand interpreter" processes are similar to

20

1 Console CRT Error Print User CRT

2 Disk Manager 0... DM3 Port Allocator Port Retrieval

Hierarchy Tape 0 Tape 1 Light Pen Display Disk Controller

Layer 1 3 Electrostatic Online Print 0 OP1 Offline Print 0
OFP1 Punch

4 Online Input Offline Input

Hierarchy 1 Page manager
Layer 2 2 Central Scheduler

1 Offline Output Controller
Header

Hierarchy 2 Basic Files Basic Files
Layer 3 Read Write File Supervisor Read Write

Catalog File Supervisor
Catalog

Hierarchy User command inter-
Layer 4 preter

User and sub-
systems
Job Controller

Hierarchy High Level Scheduler
Layer 5 Job Creation

Paper Tape Header

Hierarchy Console Command Interpreter
Layer 6 System Control

Console Keyboard User Keyboard
Monitor Monitor

Hierarchy
Layer 7 Start-up Process

Figure 2. Hierarchical Structure of Processes

21

-- ----- --

job control and user command interpreter in function. The only

difference is that the latter are used for user jobs which the

former are used for system jobs.

Hierarchy layer 7 is the "start-up process." It is the first

process of the whole system. It enters an infinite loop after com-

pleting system start-up. When the CPU is idle, the system will

enter into the "start-up process"

2. Process family and process control

CZXT-013 divides the processes into 8 families according to the
maximum number of jobs allowed. All processes in the same family

cooperate to complete the job. Processes in family 0 correspond to

system jobs while the other families correspond to user jobs. The

first family corresponds to service jobs, the second family to on-

line jobs and the 3rd through 7th families to offline jobs. The

system family consists of the processes in the left column of

Figure 2. Each famil of the user families consists of processes

on the right.

"Start-up process" is the first process in the whole system.

When the system begins operation, it enter this process first. This

process completes the system start-up. In particular, it creates

and starts all the processes in the 0th family. After that the

system awaits for the entry of jobs. When the input port has a job

queue or when an online j ob or service j ob request s f or entry int o the

system and if the "high level scheduler" process examines the job

and permits its operation, it will create and start-.up the first

process of the user family, i.e., the "Job control" process. The

"Job control" process will then create and start-up the rest of /331
the processes of the user family. Thus,the processes of CZXT-013

contain 4~ generations as shown in Figure 3. All the processes of

the same user fam. ly (including the user prooess) work together to

22

7 t

S * * 3m uI

Figure 3. Process Families

Key: (1) Page Manager; (2) User (subsystem); (3) User console
command interpreter; (4) Catalog; (5) Read; (6) Write; (7) File
Supervisor; (8) Page Manager; (9) Basic Files; (10) Job Control
Process; (11) Job Control Process (Family 7); (12) (The 1st Family)z
(13) Device Manager Process; (l4) Storage Manager Process; (15) File
Manager Process; (16) High Level Scheduler; (17) Process; (18)
System Job Control Process; (19) Start-up Process.

complete the computational task of the job. When input and output

are needed, messages will be sent to the device processes of the 0th

family, requesting them to complete the I/0 tasks. When a job ends,

the "Job control" process of its user family stops and cancels the

other processes of its family and then the "Job control" process

is stopped or cancelled by the "high level scheduler" 'process. All

the processes in the 0th family, including the "high level scheduler"

are never cancelled. The 4 primitives XCREAT, XSTART, XSTOP and

XDESTR in the kernel are used by the nmin process to create, start,

stop and destroy sub-processes.

Device management processes are provided only in the 0th family

so as to reduce the total number of processes in the system. If

device processes are provided for each user family, then the total

number of actual processes will greatly increase with the number of

2

: I 23

L . _ "-

jobs in simultaneous operation, and the system overhead will be

excessive.

3. Process states and their transition

The complete period of a process from start-up to deletion may

be viewed as the life cycle of the process. We describe the stages

of a process during its life cycle in four states. They are: stop,

ready, execute and lock. After creation, the process Is in the

stop state. It is in the ready state after start-up. When a pro-

cess in ready state is selected by the low level scheduler (XCPUSC),

it then enters the execute state. When a process in execution cannot

be executed temporarily due to some cause such as waiting for I/O
to complete, it changes into the lock state. When the time slice of

process execution is up, it also changes into the ready state.

After the cause for locking is relieved, the process changes from

the lock state to the ready state. No matter what state the process

is in, it always turns into the stop state when it is stopped. The

transition of status of a process is accomplished through the corre-

sponding primitive. Figure 4 gives the 4 states, their transforma-

tions and the corresponding causes.

4. Process communication

In their direct, mutually governing relationship, the processes

in a system also relate to one another parallelly in addition to

the control relationship mentioned above (create and delete, etc.).

Our system uses 2 kinds of tools to solve the parallel problem.

The first tool consists of the P, V operations. The XP, XV
primitives in the kernel are used to implement respectively P and

V operations. In addition, 3 signal-related operations are defined
in CZXT-013 in accordance with practical necessity. The first is

"broadcast" style V operation, namely V'(S) operation. The kernel /332

24

primitive XVV realizes this operation. Its difference from the

regular V operation is that it awakens all the processes waiting

at the corresponding signal. Sometimes several processes become

locked because their requests for non-page storage blocks can not

be satisfied. When the size of storage blocks which are released by

some process, is larger than the total demand of all the locked

processes, then the release action of this process should awaken all

the locked processes. XVV is designed to achieve this goal. The

other 2 signal-related operations are P(S1 ,S2) and V(S 1 ,S2). The

XW and XV in the kernel implement these 2 operations. P(S1,S2) is

equivalent to V(S2) and P(S1) operations with no interrupt allowed

between them; V(S1 ,S2) is equivalent to V(S 2), and V'(S 1) also with

no interrupt allowed between them. P(S1 , S2) and V(S1 ,S2) are

mainly used in output process in critical regions. For example,

the process segment in the kernel primitive XALOC, which examines

whether the free storage chain (FSB chain) contains large enough

FSB block is a critical region. P operation must be performed before

the critical region is entered so that the other process can be

locked out. When storage block of large enough size cannot be found

after FSB chain has been searched, V operation must be performed

before leaving the critical region to release the lock-out on other

processes. P operation must also be performed on the waiting sig-

nal for internal storage to lock-out requestors. These 2 P, V

operations before exiting from the critical region must not be inter-

rupted, otherwise it will not be safe. Hence P(S1 ,S2) is used to

implement this demand. XFREE primitive uses the V(S 1,S2) operation

after releasing the storage blocks prior to exiting from condition

critical region.

The second communication tool is the message buffer. In the

kernal, XSEND and XRECEI are the message sending and receiving

primitives. Their meanings are the same as those of corresponding

primitives in an ordinary system. To improve communication between

processes, we have added to our system a few primitives. XWAIT

waits for the message from some specific process and rejects

25

Selected (XCPUSC)

Ready Execute

ime slice filled
(Interrupt)

Start Pause
(XSTART) (XP)

Stop Lock-Out

(STOP) Release
(XVXVV)

Create(XCREAT) : i
stop Lo ck J

Delete
(XDESTR) Stop

(1XSOP)

Figure 4. Transition off Process Status

temporarily the messages from other processes. The function of the

XSENWA primitive is the sum of those of XSEND and XWAIT. It is

easier to use XSENWA when the process waits for an answer immedia-

tely after sending a message. XANSR is answer dispatcher. A pro-

cess sends message requesting service with XSEND. The server sends

the answer message with XANSR after service.

As mentioned before, in order to reduce the total number of

processes, device management processes are concentrated in the

0th family and not installed in each user family. Howeverthe result

is that communication relations must be established between each

user family and the 0th family. Communication between different

families involves more complications than that within the same family.

For example, as the "basic file" process of an online user family

sends a message to the "online print" process of the 0th family,

asking for printer output but before the "online print" process

26

i 26

- - F - - - - - -

replies, some accidental event causes the online user to end abnor-

mally and the "basic file" process is deleted. The "online print"

process has no way to know this. After it has finished printing

and proceeds to send a reply, there is no one to receive the message.

Because of this, 2 primitives XSENDF and XANSRF are established in

the kernel to implement interfamily communication. Beside the

functions of XSEND and XANSR, these 2 primitives are also implemented

with inter-family communication management. An inter-family communi-

cation counter is installed in the PCB of each process. When the

user family sends a message through XSENDF to the 0th family, this

primitive increments the sender's counter by 1; when the 0 family

replies through XANSRF, this primitive decrements the receiver's

counter by 1. Only when the inter-family communication counter of

a process is zero can it be deleted.

So far in our discussion of process communication, explicit

communication operations, namely the commuxnication primitives are

involved, on both sides. There are also 2 rather special communica-

tion situations. One is the request for page allocation by a user

process due to lack of page. Here the "page management" process has

an explicit message reception operation by the user process ana does

not have any explicit message sending operation. Another is the

communication between the external environment, such as the opera-

tor, and processes, e.g., the manual mounting of magnetic tape or

paper tape by the operator. Here the external environment may be

considered as an external process, and the situation then becomes

that of the communication between an external process and an internal

process. In CZXT-013, the 2 special communications are processed

through interrupt. The 'Lack of page space for a user process or the

manual operation will both cause an interrupt. The interrupt mana-

ger transforms the interrupt signals into messages and sends them to

the appropriate process. The XSENK primitive is provided for this

purpose. It is called by the interrupt process to send messages

for the user process or the external process. Both XSENK and XSEND

27

are used to send messages. The difference is that the message

buffer of the former is fixed, requiring no requesting since the

interrupt process does not permit waiting for unavailable buffer

for any length of time, while the message area of the latter is

requested temporarily by XALOC.

IV. System Protection and Security

By system protection we mean than the hardware resources and

software resources (programs, data bank) can only be visited by

certain permitted modules or processes through clearly defined

operations ,so that the resources will not be damaged or lost. In

CZXT-013, aside from using such machine states as the virtual!

real states and computer/manage states provided by the hardware to

localize errors, certain measures are also taken in the software.

To avoid damaging the system by its own errors, and to prevent

the spreading of the effects of system software errors, we designed

a supervisor system in the system. It is composed of several super-

visor programs. These programs are inserted in the system programs

at appropriate locations to supervise the correctness of system

operation. For example, the supervisor programs inserted in the

XFREE and XJ primitives primarily supervise the paged and non-paged

release of the storage.

To improve resource utilization rate, dynamic resource alloca-

tion and usage strategies are used in CZXT-013. However, this

caused problems in resource retrieval. In particular, when a job

ends abnormally due to some accident, special care must be exercised

in retrieving the resources allocated to the job, otherwise resource

loss might ensue, causing the system to be unsafe. In the design of

CZXT-013, each possible case for loss has been carefully analyzed

and suitable measures have been taken. The treatment of SMC segment

is a way to prevent the loss of the soft resource of shared kernel

data bank. To prevent the non-page storage blocks requested by the

process to be lost during abnormal deletion of the process, we link

together the various storage blocks of a process. There is no

pointer in the PCB process pointing to this claim. When the process

is deleted, the XDESTR primitive inspects the chain and returns those

storage blocks not released by the process itself.

V. Experience and Lessons

After more than 40 man-years of research and development,

debugging, testing, and trial run over some period of time, the

CZXT-013 hierarchical structured operating system basically achieved

the expected result.

The system structure is successful. Due to the adoption of the

design tools of hierarchy, process and modularization, the system

structure is clear, which doubtlessly contributes toward the relia-

bility of the system. Preliminary statistics indicate that the

system overhead of CPU time (system program execution time and idling

time) is generally 12-24% with an average of 18%. For jobs not as

well fitted, the overhead may be somewhat higher. If jobs are

purposely fitted, i.e., according to their volumes of computation,

input/output, required virtual storage, etc., better efficiency may

be achieved. Overhead for internal storage does not exceed 20%.

Further analysis of the effect of system overall structure shoula

only be done after the system has actually operated over a much

longer period of time. At present we shall only discuss the follow-

ing aspects:

1. The modular design of the kernel makes it highly reliable,

easy to program, debug and test. Adding and deleting the primitives

becomes very easy. But such a kernel design method with unitized

function, modular independence and unified interface leads to the

installation of 4 status reserve areas in the PCB of each process,

thus increasing the overhead. On balance, we think this design is

still acceptable.

9 29

2. The hierarchical structure of the processes clarifies the

system structure and function, making it easier to understand and

modify. But in the implementation at later stages, we did not

strictly adhere to the principle of uni-directional dependence between

the layers. Most of the processes are uni-directionally dependent

but individual loops still exist, causing some software errors. For

example, in the communication process, the phenomena of partly switch-

ing had occurred due to message loops. When Process A is waiting for

a reply after sending a message to process B through the XSENWA

primitive, it happens that process B also sends a message (not a

reply) to process A. Process A accepts the service request message

from process A as the reply to its own message and results in an

error.

3. Concentrating the device management in the 0th layer and

not spreading it in user families has no doubt reduced the number of

system processes effectively. Optimization of the magnetic disk

access can also be more easily implemented. However,some problems

have also been introduced; e.g., the problem of inter-family communi-

cation. 2 primitives are added in the kernel to handle inter-

family communication, making the system more complicated. Further-

more, this concentration Is disadvantageous to the protection of

the system. The jam phenomena occurred in the operation of the

device management processes of the 0 layer will make the input/out-

put operations of the user jobs in the other 7 families unable to
proceed normally.

4. Although introduction of concurrence in the primitives has

definite advantage in improving system efficiency, yet it has also

greatly increased the complexity of the kernel. The communication

problems and the treatment of SNC segment in the kernel are all

caused by this. If the primitives are restricted to serial calling

only, then both of these treatments may be eliminated. This not

only w~ll greatly simplify the kernel, but also will save all the

CPU time spent on these operations. In a batch processing system

30

with no severe demand on response speed such as CZXT-013, intro-

duction of concurrence loses more than it gains.

Comrades Yang Li-zhong, Chan Yu-yan, He Wan-hua, Liu Ming-di,

Huang Wan-yong of the Computing Center, Academia Sinica, partici-

pated in the implementation of the kernel. We would like to extend

to them our gratitude.

31

......

THE DESIGN OF THE CZXT-013 JCL (JOB CONTROL LANGUAGE)

AND THE IMPLEMENTATION OF JOB CONTROL

Chan Hua-Ying Lu Yu-zhen

Computing Technology Research Institute, Academia Sinica

Abstract

This paper describes a user-oriented job
control language CZXT-013 JCL. The design prin-
ciple and some specific commands are presented.
Some key problems in realizing the CZXT-013 job
control, such as event and condition command,
information notification and log file, log-out
treatment and fault treatment, are discussed and
their processing methods are also given.

At most, seven jobs can run simultaneously in the CZXT-013 sys-

tem and one of these is an on-line job. Our system provides a func-

tional and flexible job control language (abbreviated as JCL) suita-

ble for scientific users. Both on-line and off-line controls are

supported. Furthermore, in accordance with the characteristics of

medium and large scientific users' computational procedures--testing,

trial run and actual computation, we have made it possible to use

both the on-line and off-line controls as well as alternating them

for on-line jobs.

I. Job control language and operation manual

1. Job control language as system-user interface

The operating system extends the base machine to a functional,

efficient and convenient virtual machine. Through the two languages

provided by the system--the extended instruction set and the job

control language--the user makes use of the various functions provided

by the virtual machine. The extended instructions are used in the pro-

grams, and JCL is used in the operations manual or on the console.

For users who use algorithmic language to write programs, the extended

instructions are used implicitly.

Received 5 Auguat 1980.

32

(The user uses directly statements in the algorithm language

which are then implemented with the extended instructions by the

compiler). Hence, JCL becomes the principal interface between the

system and the user. JCL implements the system functions and it can

be regarded as an explanation of the system. The design of the JCL,

on the one hand, is confined by the design of the system functions

and, on the other, it also affects the design of the system functions.

2. Design consideration of JCL

CZXT-013 is an operating system oriented toward scientific com-

putations and, therefore, the JCL is also oriented toward scientific

computations. In the design, we have taken into consideration the

requirement for program testing and program execution control by

scientific users as well as the existing keyboard instructions and

the practical experience in using the testing and debugging methods

in algorithmic languages, and have come up with a job control language

that is functionally complete, flexible and easy to use.

When a user is preparing a Job he has to use a variety of lang- 33

uages--algorithmic or assembly language, extended instruction set and

JCL. For convenience, it is preferable that these languages be uni-

fied and standardized. In designing the JCL, we have paid attention

to make the format of any statement as much the same as possible with

that of the related statement of similar functions in the algorithmic

language, e.g., the read/write commands. On the other hand, the ex-

tend~d instructions and the JCL with similar functions are unified

through the "command" extended instructions. The user may store the

command in the form of characters in a memory area,the first address

of the area unit is used as the parameter for the command extended

instruction. This extended instruction has identical functions as

the corresponding command. Using this instruction, it is possible to

write non-control type commands directly in a program.

The various commands in the JCL of our system, whether they be

the operational commands used in writing the operational manual or

the keyboard commands entered from the keyboard, or the commands

33

appearing in the header of the paper tape, are all written in a

unified command format to facilitate user job preparation.

The command format should be simple and easy to memorize. Such

command implements a complete function for the user. Many commands

take the form of macro commands. For example, the compile command

really consists of a series of commands, such as the open command,

read command, start command, etc. However, one should also consider

the fact that it is not suitable to have too many parameters, or too

compltcated a structure. For the sake of making it intuitive and

easy to remember, it may be desirable to break what may be unified

as one command into several commands. For example, the assignment

command and the set 0 (1) command may be unified into one read com-

mand. However, this will result in a large number of parameters as

well as a lack of intuitiveness.

It is impossible to avoid extending or improving the JCL during

the process of its usage; hence one must consider extendability in

its design. Three ways are provided in our system for extending the

JCL: 1. To extend JCL commands, it is only necessary to add one

term to tbe verb table and add the corresponding command interpreta-

tion module to the command interpretation procedure; 2. Extension

of service commands. A system service job is provided in our system

to furnish some service items to the user. Each service command

accomplishes one service item. The JCL function may be extended by

increasing service commands. In this way, the main program of the

system will not be affected. Only the system library files need to be

extended by adding the service programs that interpret the Pytended

commands; 3. Our system permits the user as well as each subsystem

(i.e., each compiler system) to define, interpret and execute commands.

A "user defined" command (the entrance to the user defined command

interpreter program being given by the command parameter) is used to

establish the connection between the system and the interpreter pro-

gram for the user defined command. Thereafter, the user may then use

at will the various commands so defined. (The user defined commands

must be headed by the symbol + to show distinction). This is the most

flexible way for extending JCL functions.

314

3. A brief introduction to CZXT-013 JCL

The general format of JCL command is:

<label><verb><2 arameter><list><delimiter>
1)

'ibe label indicates which subsystem is involved or whether it

is a user-defined command when the parameters are interpreted. The

verb is the command operand and consists of two characters. Para-

meters vary with the command. Name addresses are allowed. There are

60 commands in the system. They may be classified according to their

functions as follows:

(1) job set up category: To set up Jobs, request resources,
determine job category and provide command manual, etc.

(2) compiler category: To schedule various subsystems for com-

pilation so that the commands of the executable target pro-

gram may be obtained.

(3) file organization and management category: Commands such

as set up file, open file, close file, delete file, modify

tape file attributes, backup file, etc. There are 13 such

commands.

(4) read/write category: Various input/output commands. In

addition to the read, write and transmission commands, there

are the console output, assignment (the content of assign-

ment for some variable values is given in the command), set

0 or set 1 (set to 0 or 1 for some variable positions),

clear (0 clear for whole group of memory units).

(5) testing and debugging category: Namely, commands used in

testing programs such as tallied stop, timing (i.e., set

program times), trace, backtrack, retain, restore copy,

print status, etc.

(6) job run control catalog: commands for initiation and term-

ination of job run, such as START, CONTINUE, MOUNT TAPE,

l)The symbol indicates that the item is optional.

'i i ! 35

PAUSE, LOG-OFF, DISMOUNT, etc. The condition commands

used to process events in the offline control mode also

belong to this category.

(7) operations manual control category: The operation manual

may be regarded as a "program" that controls the running

of the job. As for the general program, we have provided

a set of commands such as transfer, return, reverse, etc.

to alter the execution route of the manual and to organize

suboperation manuals.

(8) Online/offline control modes switch category: For switch-

ing control mode of online jobs, consisting of commands

such as transfer operation, return control, execute opera-

tion, continue execution, etc.

(9) service command: Commands used by the system in servicing

the various service items set up by the job. One service

item corresponds to one service command, e.g., compiling a

program, transfering a file, etc. Once a service job is

established, the operator needs only type in one service

command to complete a service for the user.

(10) operator command: Commands used by the operator on the con-

sole to create, control and monitor system operation or to

service offline user's command.

With the exception of categories (9) and (10) which are used by

the operator, the commands in the various categories above are all

used by users. Commands in categories (l)-(7) are the basic com-

mands that should be provided by all common operating systems. We

shall only introduce further some special commands of our system.

Taking into account the special characteristics of scientific

users, we have provided in our system a complete set of debugging

commands. The tallied stop command format is as follows:

FT S <position>; <frequency> or

FT Z <position>; <frequency>

36

They implement, respectively, numerical or index code, and will
effect a tallied stop after going through a tally point n times.
The trace command formats are:

ZZ L <trace>

ZZ S <trace point>

ZZ A

to implement line tracing, value tracing and trace all respectively.

Trace point and trace range can also be specified. We have
also provided keep copy and restore copy commands. The keep copy

command format is:

BL <device number>, <logic record number>; <status table mess-

ages>.

The status retention table messages indicate what the user wants

to keep. These messages may be given directly in the command or
stored in the 0status table (when the contents to be retained are wide-
ly distributed) with the first address of the status table given in
the command; the status table may also be dynamically constructed
with the entry point to the status table construction program given

in the command. The restore copy command format is similar. For
scientific users with '.ong computing time, these two commands are not
only debugging tools, but also protection tools. Because the hard-
ware and software stability in our country is still unsatisfactory,

it is frequently necessary to use the keep copy command or extended
instruction to retain copy during operation so that a suitable copy
may be chosen, if necessary, to restore operation.

In a multioperation system, the functions to implement keeping

and restoring copies are complicated but very necessary.

In the beginning of this paper, we mentioned that, for online
jobs, one may use two methods for control and may switch between these

at will which means that the online user may also use the operation
manual. We have designed a set of flexible control switching methods

and commands that maximize the advantages of the manual. When the

37

online user is furnished with the manual, the manual may enter the

system first. An online Job is established when the online user

types in sign-on and request command on the console. Then when it is

necessary to switch to offline operation, one needs only to enter a

switch operation command ZC <operation code> to switch operation to

the corresponding command in the manual. A return control command 33E

FK is provided in the manual to switch from offline to online opera-

tion. When an online Job is running under offline mode and a user

enters any non-switch operation type command on the console, the

system will switch control to online operation as it carries out the

command. The system also provides the execute-operation command ZX

<operation code> (to execute a command in the manual, similar to the

execute instruction in the average machine) and the continue execu-

tion command - (to continue execute any command in the manual). With

these commands the user may execute one by one the commands in the

manual. Now the online operation mode will not change and it is not

necessary to enter all the commands on the keyboard. Thus the opera-

tion is simplified, time is saved, and the flexibility of the online

control is not affected.

Jobs are initiated by the initiation type commands. After the

program is running, the system establishes the relations between the

program and the user through occurred events (this is the manual for

offline jobs). To peocess events and thereby control the running of

the program, online users enter commands through the console and off-

line users through the condition commands set-up in the manual. The

format of the condition commands is

RU <event name>; <operation code> or

RU <event name>; *BZ

This means: if event with <event name< appears, then execute the

command with the <operation code> in the manual. *BZ means to carry

out normal procedure when event occurs. At present, only one type of

normal procedure is provided by the system--log-off, but it may be

expanded to many types according to need. For <event name>, see the

event table in part 2. An event name may also be *, indicating that

any event that may occur are to be processed by the <operation> shown

by the command or by *BZ.

38

- --

- - - - -- -- - - -

There are two ways to arrange the position of a condition com-

mand in the manual: before the initiation type commands or after

the initiation type commands. We adopt the former method because it

facilitates the user to organize his manual and simplifies the

Implementation of the system. Condition commands may not appear at

all indicating that normal procedures are to be used to process the

corresponding events when they occur. If an event is to be processed

differently after the next initiation, it is only necessary to write

another condition command because according to the dynamic execution

order of the manual, the condition command of the same event will take

precedence if it is entered later. If no events require special pro-

cessing after the next initiation, then only one RU*; *BZ needs to

be written. Often several events may be processed in the same way.

We may take advantage of the system-supported return command ZF

<operation code> and reverse command FH to organize sub-operation

manual. Thus, the set of condition commands and commands executed by

the control manual as provided by the system is fairly complete. The

user may organize simple operation manuals flexibly and conveniently.

4I. Format and organization of the operation manual

The general format of the operation manual is:

<label section><command sequence><end section>

The label section is <manual name>: <comment> 2, and the end 338
section is only an end mark. In order to edit the manual with an

existing editor, page and line marks may be freely inserted in the

manual.

Ordinarily, the commands in the manual are interpreted one by one

in sequence by the system. The path of execution is changed in the

following situations:

(1) when transfer commands are encountered: the execution will

be transferred to the appropriate command as for the trans-

fer instructions in a program.

39

(2) when initiation commands are encountered: After the ini-

tiation type command is executed, the user's program starts

running. The system waits for events to occur in the pro-

gram. Once an event occurs, the system will transfer in

accordance with the condition commands to the command with

the corresponding operation code for execution or normal

processing.

Hence, in a sense, condition commands and processing of various

events are the nucleus of the operation manual. In Section 3, we

have mentioned that condition commands must be written before the

initiation command used in the current run. The positions of other

commands in the manual are not restricted. They are organized accord-

ing to the need of the user. In general, the organization of the oper-

ation manual is as follows:

(1) define logic device number--establish or open some files.

(2) read in program and data--some read command, compile

command or mount tape command, etc.

(3) set some soft console values or switch values--with assign-

ment command or set 0, set 1 commands. If necessary, some

debugging measures may be set--with tallied stop command,

timing, trace commands, etc.

(4) regulate how various effects are processed after the current

initiation--some condition commands

(5) initiate user program

(6) process various events

For example: The program of a job A resides on magnetic tape,

file name being PFILE while the data resides on paper tape with file

name DFILE. Already from the entry command TRII-R; DFILE is already

in the system. The Job calculates coefficients and initial values
first and starts the main calculation after the occurrence of the

pause event READY. After every two minutes, results will be printed.

In this run, it is also necessary to control the disc (i.e., the

record on disc extended instruction is effective). The Job requests

40

- ---- ---

a run time of half an hour and then logs off when the time is up.

The manual of this job is as follows:

ISMS: EXAMPL& 1980/6 1) define logic device number, open the
K 12-D; Z; FILE; FX)) magnetic tape file on which the program

,M 13-P)) resides and the disc files used for disc
@DU (12,0)P 3oo)) recording in the program

DU (11.0) DATA .) read in program and data 339

RU ZT. READY; SMSI) after computing the coefficients and
initial values go to SMS1

QV START)) start program running

processing of pause READY: set soft
=1: zi KG; 0. 7 ? switch value to control disc recording

DK 14-Y) in the program during the current run;
JS 120) define logic device 14 as print file;
RUCS; SMS2 set program timer to 2 minutes; transfer
M to SMS2 when program time is up; continue

start-up

processing of events on program timer:SM2: GB 14 close print file 14, i.e., offline output
ZYSMSI result once, and then go to SMS1

II. Implementation of CZXT-013 job control

The control of job run is accomplished by the job control pro-

cess. Job control process is the first process of the job family.

Once the high level schediler schedules a job to run, the job control

process is then established and initiated by the high level scheduler

program. Then the various processes of the job family are established

and initiated in an outward direction according to the level structure

of the job family by the job control process. When the job finishes

running, the various processes of the job family are stopped and

deleted one by one in an inward direction by the job control process.

Thus the job control process establishes, controls, and deletes the

various processes of the Job family.

The online job control process must process the reception and

* implementation of keyboard commands while the offline job control pro-j cess must control and implement the operation manual (another command

-41

interpretation process is provided in our system to help process com-

mand interpretation). Some extended instructions of a controlling

nature are also processed by this process. During the run the job

continuously requests system services and produces various events.

The job control process must report the service status and event pro-

duction as well as process the events, particularly the wrap up pro-

cessing during log-off and error or fault events. We shall only

introduce the processing of a few key problems in the implementation

of job control.

1. Events and condition commands

It has been mentioned above that the production of events is the

major means with which the system establishes a program and communi-

cates with the user after the job starts to run and that the condi-

tion commands are the major means with which the user controls the

running of the job offline.

The initiation of events is related to the functions provided by

the hardware and software. It also should enable the user to control

the running of the job flexibly with these events. According to their

mode of production, events may be classified into four categories:

(1) events produced by hardware--e.g., events caused by error

interrupt due to main frame error and program interrupt due

to program error, such as computational overflow, illegal

operation, etc.

(2) events caused by hardware/software combination--e.g., pro-

gram timer up, tallied stop, etc.

(3) events produced by software--e.g., various syntax errors of

commands and extended instructions. These events may be aug-

mented and may be set up in a flexible and diversified way.

In particular, subsystem pause extended instruction is sup-

ported in our system, based on which many types of events

may be produced in conjunction with various subsystems, such

as subscripted variable address out of bound, etc.

42

(14) events set up by the user to communicate with the program,

e.g., pause event, wait (for instruction) event. Pause

event is produced by the pause extended instruction. Its

parameter (halt number) may be a character string of no

more than six characters or an octet number of no more

than six digits. Different pause events are produced by

pause instructions with different half numbers. The pause

instruction of the subsystem mentioned above produces pause

event of the subsystem. It is the same as the pause extended

instruction except that it is exclusively used by the sub-

system. The pause extended instruction provides the user
with the capacity to install event production at will so as

to establish communication with the program. The user may

tactfully install pause instructions at various control

points in the program to produce pause events. With various

condition commands installed after the pause instructions,

one can then flexibly control the running of the job.

A "wait" extended instruction is also supported by our system to

produce a wait event. For offline users,its function is similar to

the pause event, but for online users, it may be used to communicate

with the program. This extended irstruction carries with it a para-

meter pointing to the leading address and length of the storage area

into which will be stored the content input from the keyboard by the

user. The program will pause when it comes to a wait instruction and

wait for the user to input a message from the keyboard. The input

message will then be stored in the area indicated by the parameter.

The system will then continue to run and may make use of this message.

The event table provided by CZXT-013 is as follows:

SY computation overflow

HY H register overflow

DZ illegal address

CZ illegal operation

CJ main frame error

YP syntax error for coimmands or extended instructions

43

XX external message error

10 external device error

DS job timer up

CS program timer up

FT tallied stop

DD wait instruction

ZT pause) different halt number
TT sbsytem aus for different events

Three tables are constructed by the system--the event-table,

the pause event table and the code-address cross reference table, to

implement job control by condition commands. Since pauses with diff-

erent halt numbers are considered as different events, the number of

pause events will vary with the job. Hence a pause event table is 31

set up separately. During scanning of the operation manual, the sys-

tem tallies the number of pause events before requesting for storage

space, building tables and establishing linkage with the event table,

so as to save storage space overhead. Process messages for events

indicated by corresponding condition commands are stored in the event

table and the pause table--such as various operation codes or normal

processing. Their initial values are all normal processing messages

which means that in the absence of a condition command in the opera-

tion manual, the corresponding event will be processed according to

the normal process when-it occurs. When a condition command is en-

countered as the system processes the commands in the manual one after

another, the event process shown by the condition command will be

entered in the corresponding entry in the event table or pause table.

Thus, the order of dynamic processing of the condition commands of

the same event will be last in first out In accordance with the oper-

ation manual.

In the code address cross reference table are stored the rela-

tions of correspondence between the operation code in the operation

manual and the position of this code in the manual (unit address and

character address). To save memory space, we process it in the same

way as with the event table, namely, that the number of codes in the

manual is tallied first, then the memory space is requested and the

144

table is constructed as the manual is scanned again.

In processing the condition commands, the position messages of

the operation code in the manual are entered in the corresponding

entries of the event table or pause table through checking into the

code address cross-reference table. Once an event occurs, the job

control process will search the event table or the pause table to

obtain the process message of this event. If it is an operation

code, then the corresponding message is used to change the pointer

in reading the manual and fetch the corresponding command for process-

ing. If it is to be the normal processing, then the entry point to

the processing program will be furnished by the table and transfer

will be made to the entry point for processing.

2. Message communicatior and monitor file 341

JCL
Although CZXT-013 Ais not an interactive job control language,

much effort is made to provide the user with enough message communi-

cation and run record. For each job, the system establishes a moni-

tor file to record the occurrence of various events and the corres-

ponding process during the run. The major content of the monitor file

is: operation manual; command dynamic processing status (command and

command reply); control type extended instruction and command extended

instruction processing status; communication message of all events;

console output message; trace command message; print status message,

job resource utilization status, etc.

The system provides in the job family a special write monitor file

program to form the monitor file. This is to improve parallelism, to

guarantee as much as possible the timely output of message communica-

tion and to make it easy to proceed with special processing under
error conditions.

To provide enough communication as well as a unified report for-

mat for the user, our system adopts the implementation method of

having the processes of a job family report upward from lower to higher

levels, finally concentrating in the job control process for process-

ing. Cmuiaonand processing are done in a unified manner by the

Communiation5

control process. For a large scale operating system to have a

detailed as well as easily understandable message report requires

a large work load. How to strike a happy medium is a problem that

must be solved for a practical operating system.

3. Log-off processing and error processing

The sign of completion of a job is log-off. The log-off of a

job may be classified into the two categories of normal log-off and

abnormal log-off. Log-off arranged by the user--at end of a job run

or termination of run due to certain event--is normal. Job forced to

terminate and to log-off due to system error (hardware or software)

is abnormal. Sometimes, in order to balance the system load, increase

system throughput or prevent deadlock, the operator needs to force a

job to log-off (through operator command). This too is abnormal

log-off.

When a job logs off, the system needs to do a great deal of wrap

up work, e.g., waiting for the completion of services requested by

the user; closing all files; rewriting magnetic tape header file,

retrieving all the resources used by the user and finally, stopping

and deleting the whole job family, etc. In order to accumulate system

property data, provide the user with resource utilization status for

the job and facilitate accounting, the system keeps certain statis-

tics for some data during the running of the job. A resource utili-

zation status table is output for the user. The system also keeps a

record.

Abnormal log-off is In fact error processing. It is complicated

but unavoidable and yet often neglected in the design. In our situa-

tion of unstable hardware and lack of experience in software, error

processing is all the more important and difficult. Error processing 342
directly affects the security and reliability of the system. When it

is done well, one can prevent the loss of resources and the prevention

of deadlock. A good structural design will diminish the complexity of

error processing. On the other hand, error processing will-also affect

system design. It may increase the complexity and work load of the

46

system. A problem that requires careful. consideration at the early

stages of design is the balance of give and take.

Limited by the lack of hardware disk and tape, their low speed

and instabiility, the lack off support for a powerful file system as

well as experience and manpower, we do not have various types of' error

recovery in our system. Thd basic principle of job family error pro-

cessing in our system is: to limit as much as possible the extent of

loss and the effect of error; to retrieve all the resources used by

the job and to avoid system deadlock.

When error appears in a job family process, the system treats

it as abnormal log-off. We divide abnormal log-off into three levels:

(1) jIob log-off when a program error or first error interrupt or pro-

gram interrupt occurs in the job family system process (non-job con-

trol process). At this time the job control process can still run

but it no longer can delegate work to subprocesses. For the user,

it is a destructive log-off but the resources used by the job can all

be retrieved and there will be no effect on the normal running of

other jobs or the system.

(2) error interrupt program interrupt appearing in the job control

process or the second error occurring in the other system processes in

the job family or the operator's order forcing the cancellation of the

job. The job control process has already been forced to stop and may

not be able to run normally. A higher level scheduling process forces

the initiation of the job control process to complete the log-off of'

the job. If other errors should occur in this process, then we have*

the third level.

(3) a second error occurs in the job control process. Now the job
control process can no longer run normally. A higher level process

will complete the log-off procedures for the job.

As far as the extent of error is concerned, these three levels

are all limited to the current job itself. However, the measures taken

are different in order to retrieve all the resources and to avoid

deadlock.

47

The complexity of abnormal log-off processing due to errors is

principally due to the fact that an error may occur in any process

at any moment. After the occurrence of the error, the process can

no longer run normally. In general, it can only stop and wait for

cancellation. The principal problem that follows is:

(1) mismatch of matching communication relation under normal condi-

tions. To solve this problem, we have to provide first the means of

checking communication mismatch. Secondly, once a mismatch is dis-

covered, it is generally not possible to rematch through the process

in which the error has occurred. We must take steps to use other pro-

cesses to do this.

(2) the wrapup process during log-off cannot proceed normally. The

resources that can be completely retrieved under normal conditions

cannot be so retrieved, especially those resources used implicitly by

the system--such as I/0 buffer, message buffer, etc. For these prob-

lems, appropriate measures have been taken in our system (see the

article "Some problems in the implementation of CZXT-013" in this

issue).

III. CONCLUSION

Job control language is the actualization and description of the

system functions. Its design is closely related to user requirement.

As the operating systems increase in number nationally, the unifica-

tion and standardization of JCL, the unification of JCL and program

design language and the research on machine-independent JCL must all be

discussed. We have encountered a number of important problems in the

engineering practice of implementing Job control, such as highly effi-

cient and secure process communication tools, error recovery and

error check, testing and prevention of deadlock system, security and

reliability, system protection, etc. These should all be studied

further.

48

THE JOB MANAGEMENT IN CZXT-013

Jin Qu-Iie, Zhen Zen -Zhen

(The 9th Research Institute of Beijing)

Zbang, Cong-Min

(Institute of Computing Technology, Academia Sinica)

ABSTRACT

CZXT-013 is a batch processing operating system which

also facilitates on-line operations. The system can accom-
modate three different types of jobs to operate simulta-
neously. This paper introduced the job scheduling scheme
of the CEXT-013 system which is realized in three levels.
This paper also introduced the states of the job in differ-
ent stages from entering to leaving the system; the state
transitions; the preparations for the job;and the handling
procpdures of jobs under normal and abnormal departures.

I. INTRODUCTION

In an operating system, the portion involving the establishment,

scheduling, operating control and departure of jobs is usually called

"Job management". With the exception of operating control of the jobs

which will be discussed by another paper, all other problems con-

cerning the Job management in the CZXT-013 system is going to be dis-

cussed in this paper.

A job in the CZXT-013 system is defined as an independent opera-

tion request made by a user to the system. Each job has its name,

and the names in the system cannot be repeated at the same time.

The CZXT-013 system permits three types of jobs: off-line oper-

ating Job, on-line operating job and system service job (from here

on they are called on-line job, off-line job and service job).

49

(1) Off-line 'ob. The operational control of the job is com-

pletely controlled by the operating manual of the job. The input of

key punched messages (including program, data and operating manual)

of the job and printing of the output message must go through the

input/output buffer (i.e., the input and output are carried out by

the so-called pseudo off-line subsystem).

(2) On-line job. The operation of the jobs is controlled by

the user from the keys of the user control desk (control desk for

short). The key-punched message and the printed message not only

can go through the input/output buffer but also can directly input

and output using external on-line devices.

(3) Service job. This type of job is to finish some service

oriented jobs for the system. For example, to transfer information

stored in an external medium to another external storage medium, the
treatment of source program with compilation but no computation,

etc., are service jobs. The job operation is carried out according

to the standard program of the system. The processing of key-punched

information and printed information is the same as that of on-line

jobs; it is possible to use either input/output buffer or direct on-

line input/output.

This paper was received on August 5, 1980.

The CZXT-013 at most will permit the simultaneous operation of 345

one service Job, one on-line job and five off-line jobs in the system.

In addition, it allows the reserving of several off-line and on-line

Jobs waiting for operat4-n in the back-up Job key (but cannot back-

up service jobs waiting Co be run).

The job scheduling of the CZXT-OI3 system is realized in three

levels, i.e., high level scheduling, medium level scheduling and low

level scheduling. High level scheduling involves the selection of

part of the jobs already assigned to the system to establish the

virtual space, to assign special input/output devices and to set up

the initial progress of the entire family of programs for the jobs--

50

manual. we nave aesignea a set or rieXioie conroi switcning metnous

j and commands that maximize the advantages of the manual. When the

37

job control process. Medium level scheduling is responsible for the

actual assignment of real storage page for the job already chosen by

the high level scheduling. Low level scheduling involves the assign-

ment of processor time to progresses (including the user progress and

system progress belonging to a job,) of a job that already has an

actual storage page. The departure of jobs is divided into normal

and abnormal departures. Certain necessary procedures are taken to

process abnormal departures in the CZXT-013 system to prevent the

system from being ircapacitated and prevent loss of information.

With the exception of the details of medium level scheduling which

will be covered in a separate paper, other problems are going to be

discussed in this paper.

II. STATES OF JOBS AND STATE TRANSITIONS

No matter what type of Job is involved from entering to depart-

ing the system, it is necessary to go through various stages in the

system. In order to describe the various stages, the CZXT-013 system

defines the following states for all the jobs:

(1) Submission state: This is a state used to describe the pro-

cess of jobs from entering the system to completion. When a job

enters the system, the system sets up a job control block (JCB) for

it. The system also records the information provided and produced

by the job in the JCB.

(2) Back-up state: This is the state when the entering of the

Job to the system is finished, JCB has been established and it is
awaiting the selection of high level scheduling.

(3) Waiting state: The virtual space necessary for the entire

operation has been established and the special input/output devices

have been dispatched. But the real storage page space has not been

assigned, therefore, the processor time cannot be requested yet.

* Under the two conditions described below, jobs will enter wait-

ing states: one is a Job in back-up state which is chosen by high

,o 1] 51

level scheduling to enter from the back-up state to the waiting state

and the other is a job in a running state which loses its real storage

page by medium level scheduling so that it is forced to return to the

waiting state from the running state.

(4) Running state: It is a job state which has been selected

by medium level scheduling. At this time, it has already assigned a

certain number of real storage pages. From a broad view, it can be

considered that the job is running. From a microscopic point of view,

it may be running on the CPU or it may be waiting to run on the CPU.

(5) Completion state: It is the state during which a job

finishes running and completely departs from the system. At this

time, the system is taking care of the aftermath (including retriev-

ing the information resources).

Figure 1 shows the possible transition between various job states.

One point must be explained individually: it is not necessary for

every job to stay n the back-up state for a period of time. As long

as the job satisfies the scheduling conditions at that time, it can

go to the waiting state through a Job transition directly without

staying over in the back-up state.

Figure 1. States of job and transitions of state
Key: 1--submission; 2--back-up; 3--waiting; 4--running; 5--completion

III. ESTABLISHMENT OF JOBS

Under the control of CZXT-013, Jobs are entered into the system

through two routes: one is called the pre-entering of Jobs and the

other is the direct entering of jobs. All the jobs can be pre-entered

into the system but only on-line jobs and service jobs can be entered

directly. Off-line jobs cannot be entered into the system directly.

1. Pre-entering of Jobs

52

Before running a job, the information required to run the job

and the whole or part of the key-punched information needed to run

the job are sent into the system ahead of time which is called the

pre-entering of jobs. In order tc realize pre-entering of jobs, the

CZXT-013 system is designed to allow the appearance of four types of

preceding commands on the leading edge of the paper tape of the job.

The four preceding commands are: escape entering command, request

command, job type command and request for system service command.

Among them, the escape entering command is applicable to all the jobs.

The request command and the job type command are used for on-line

and off-line jobs,but not for service jobs. The request for service

command is specially used for a service job and cannot be used for

other jobs.

(1) The escape entering command: The escape entering command

has the following format:

#TR < logic equipment name = <paper tape name>(<informa-

tion section name> ,., <information section name>); <paper

tape name> (<information section name>,..., <information sec-

tion name>); <paper tape name> (<information section name>,

.... <information section name>);
1)

The escape entering command is used for defined document whose

< logic equipment symbol > is paper tape. It notifies the system to

send the indicated paper tape information to the input of the system

and the correspond these input images with the < logic equipment

symbol > in the command. When the job is running, it is also possi-

ble to read this paper tape information on the logic equipment.

(2) Request command: A request command is used to request re-

sources of the system for a job. Every pre-entered off-line job and

on-line job must have a request command.

The dotted lines in the command format indicate that that portion
is a selected term

53

(3) Job type command: The Job type command is used to provide

the relevant information of the job to the system on the type of job

(off-line or on-line); the position of the storage space of the oper-

ating manual;and the symbol of the beginning of execution of the

operating manual. Every off-line job and pre-entered on-line job

must have a job type command in the preceding command series.

The format of job type command is:

*LX{L} ; <operating manual information>; <operating symbol>;

where "L" indicates that this Job is an on-line job, while "T" repre-

sents an off-line job. <operating manual information> can be a mag-

netic tape document name or a logic equipment symbol 2) of a defined

escape entering paper tape document, or a standard operating manual

symbol. For on-line jobs, it can even be blank. When the <operating

symbol> is blank, execution begins with the first order of the operat-

ing manual. When the <operating manual information> is the standard

operating manual or a blank, <operating symbol> must be blank.

(4) Request for system service command: The request for system

service command is used when the system service jobs request the sys-

tem to offer a certain system service and to provide the necessary

parametric information required for the service. At the present

moment, the pre-entered service job is limited to editing (only edit-

ingjno execution). Other service rquests will not be processed (but

can be processed by directly entering the system through the operator

at the control desk.

The pre-entered information of each pre-entered job is usually L4

composed of two parts: the preceding command series and the job

running information. The former is formed by several preceding com-

mands and the latter consists of the program, the data and the key

punched information of the operating manual. All this job running

information is punched on one or several paper tapes. Each paper tape

q2) 2) At this time, there must be an escape-entering command in the pre-

ceding command series which defines the corresponding storage
equipment after the key punched information has entered the system.

54

3417

job control block zipper indicator

job nme
channel no. job control job nningrequested no. of doc- no. of magnetic
when the job type, T/off- character- service item uents escape tapes on request
is running line, L/on-line istics type of system entering

F/service service jobs

" time at which the job enters the system

the latest time at which the job begins to run

actual time at which the job starts to run

tine at which the job finishes running

information on the operating manual relevant to storage

symbol of the geginning of execution according to the
operating manual

virtual storage space requested by the job (using pages
as the unit)

actual storage space of the job required by the job
(using pages as the unit)

running tine required by the job (using minutes as the unit)

each requested magnetic tape unit has a corresponding unit which gives the reel
nuber of the magnetic tape used on the magnetic tape recorder) not to exceed 4 units

each unit not to
exceed 5 reels

each entering document has a corresponding unit which records)
the first zone corresponding to the document) not to

)exceed 20
total no. of zones occupied by the positions and the corres-
panding logic equipment sybol

job control block termination symbol unit

Figure 2. Job control block (JCB)

55.

can be divided into several information segments3 or it is not divided

at allwhich is indicated by the paper tape label at the beginning of

the paper tape. If the paper tape is divided into information seg-

ments, then each information segment must be labeled with different

information segment names. Each paper tape must be punched with a

lead including <Job name>, <paper tape name> and <paper tape type

characteristic information>. In all the paper tapes of a pre-entered

job, only the leading part of one paper tape must contain a <preceding

command series>. Under the most special condition, all the punched

input information of the pre-entered job is only the leading part of

the paper tape containing a <preceding command series> (i.e., there is

no key punched input information needed to be read in the running of

the job).

2. Direct entering of the jobs

The other route to enter a job into the system is direct entering.

During on-line jobsthe users can use the control desk to enter com-

mands such as "sign-in" and "request" and in system service jobs, the

operators at the control desk can type in "request for system service"

command to enter the system. In these commands, they contain all the

information such as job name, resource request, requested service item,

etc. needed to establish the corresponding job in the system. Off-

line jobs cannot be entered into the system directly. When the

directly entered job is running, the requested key punched input

information is sent in from the on-line input in operation.

3. The establishment of Jobs

When the job is pre-entered into the system, the duty of the sys-

tem is to process the preceding command series. During the course of

processing the preceding command series, it also establishes the

escape entering paper tape document (if there is an escape entering

command) for the job and fills out the contents of the job control

block for the job. Each entering command causes the establishment

of an entering paper tape document. The image of all the key punched

56

information belonging to the document is placed on the input device

(magnetic disc) according to a serial document structure. The posi-

tion of the first zone and the number of zones corresponding to the

document as well as the corresponding logic equipment symbol are

recorded in the job control block. The system requires that the num-

ber of entering command for each pre-entered job cannot exceed 20.

The information provided by other preceding commands is also recorded

in the job control block.

After the processing of the preceding commands is complete, the

corresponding control blocks of each pre-entered job are keyed into

the off-line back-up job key or on-line back-up job key to await for

the selection of high level scheduling. At this time, the submission

state is shifted to the back-up state. For system service jobs, the

system is not equipped with a back-up job key. Therefore, at any

time, the system only allows one system service job.

When the job is entered into the system directly, the system esta-

blishes a job control block after receiving the job establishment

command (e.g., "sign-in"' or "request" or "request for system service").

It also enters the relevant information given in the commands and

then the job is shifted to the back-up state.

It must be pointed out here that in order to schedule the on-line

jobs and system service Jobs entered to the system directly with prior-

ity, their control blocks in the back-up states are not placed together

with the back-up jobs pre-entered into the system. They are specially

placed individually at two special keys. In addition, at any time,

each key has only one job as the maximum.

(JCB)
The detail of the Job control block is shown in Figure 2.

IV. SCHEDULING OF JOBS

The scheduling of Jobs not only involves the distribution of the

processor but also is related to the distribution of the resources of

the entire system. The CZXT-013 system uses high level, medium

57

I - -- - - -- - - - - - -7-

level and low level scheduling, to realize the scheduling of the

entire system.

The CZXT-013 is primarily a batch-processing oriented operating

system. Therefore, in the design of the method of scheduling, the

main problem considered is the increase of system efficiency, espe-

cially the utilization efficiency of the CPU. For that, the system

adopts the following scheduling principles:

(1) To divide the lobs into three types according to the running

characteristics: computation-oriented, input/output oriented and the

usual type. High level scheduling, when making the selection from the

back-up jobs, will make an attempt to balance between computation and

input/output.

(2) When each off-line job is entered into the system, the sys-

tem assigns a "latest time to begin running the job". The sequence

of this time actually reflects the priority from the "back-up state"

to the "waiting state" or the duration allowed to stay in the back-up

state. The "latest time to begin running the job" is obtained by

adding an increment to the "time at which the job enters the system".

When calculating the increment, we have to consider the amount of

special equipment required by the job, the size of storage memory and

the duration of the running time. Small jobs will get the priority.

Howver, large jobs are also assured to be scheduled after spending a

certain amount of time in the back-up state.

(3) The CZXT-013 is a virtual storage operating system. In order

to assure the efficiency of the system, the use of real storage is a

key. For that, in the scheduling method a medium level scheduling is

established to monitor and adjust the use of real page with respect

to each running job to avoid the occurrence of "bumpiness" which

causes drastic reduction in system efficiency.

(4) When jobs are running, to the extent possible, the system

assures that a job is in "real job state",which means that during

running it will not produce a job with "page fault" to ensure that when

' 58

other running jobs have page faults the CPU is still utilized. 3I4c

(5) The operator can ensure the rational utilization of the

resources of' the system by changing the off-line job channel number

allowable for running by the system (by establishing an operator's

command to realize this function).

(6) Using a ready line-up station with various priorities.

When the processing progresses into the ready line-up station, it

enters different lines according to the characteristics and the rea-

sons for the blockade. The system progress always enters the highest

priority ready line-up. The user progress proceeds based on the

various causes releasing the CPU such as (1) page fault (2) on-line

input/output (3) transfer of document (14) expiration of time piece,

etc., to determine which line-up it is going to enter. When the ready

progress gets into the CPU, the system progress assures to give a

long enough time piece. For a user progress, the high priority ones

are given shorter time pieces while low priority ones are given longer

time pieces. The advantage of adopting this scheduling principle is

to reduce the number of CPU carving to reduce the "expenses" of the

system.

V. THE SCHEDULING OF ON-LINE JOBS AND SYSTEM SERVICE JOBS

In order to ensure that on-line jobs can be scheduled at any

time, a certain amount of on-line job resources is reserved. These

resources are: a 260 K storage memory (including virtual storage and

disc storage), two magnetic tape drives and a printer. The request

for on-line job resources will be immediately scheduled after typing

in the "sign-in" and "request" commands within these limits regard-

less whether the running characteristic type of the job is proper.

If the request for resources exceeds the limit and the present system

cannot be satisfied, then it is necessary to wait (i.e., staying at

the back-up state). At this time, the system temporarily suspends

j the scheduling of the off-line job to satisfy the resources needed

for tbe on-line job with priority.

59t

The system does not reserve any resource for system service jobs.

However, when the resources of system service jobs cannot be satis-

fied, similar to the case of on-line jobs, priority is given to satis-

fy it first.

VI. PREPARATION OF RUNNING THE JOBS

When a back-up job is chosen by the high level scheduling, the

high level scheduling must make various preparations for its running.

These mainly include:

(1) to distribute a running channel number for the job;

(2) to assign special input/output devices for the job. Here it

mainly indicates magnetic disc drives;

(3) to establish the virtual space of the job. This includes

the dispatching of back-up storage device (magnetic disc) based on

the reque-,ted storage capacity and the establishment of page table.

Because the page table zone of each job channel has fixed storage

position for the 013 machine, in order to raise the utilization of

the real storage page, these real pages can be occupied by the jobs

in other channels before the page table is established. Hence, at

this time it is necessary to determine whether the page table zone of

the job channel is blank or not. If it is occupied, then the occupier

will be ordered to liberate 'this- page space. Afterwards, page table

can be established;

(4I) to establish "user document index" for the job. The CZXT-013

requires that each job channel can use 32 pieces of logic equipment.

Its octal symbols are 0-37. The input and output as well as the

access and storage of document during the running of the job can be

opened to (i.e., defined to) a certain logic device using the "open"

command ahead of time and then carrying out reading and writing from

that logic device. The 0, 1, 35, 36 and 37 logic devices among the
32 logic devices are opened consistently by high level scheduling

60

which is also defined by the system. They are defined separately as

controlling the image printing, system printing and monitoring docu-

ment, etc. 35C

When pre-entered jobs enter the system, the input document

defined by the user with the relevant information orginally recorded

in the JCB will be moved to the "user document index";

(5) a running priority number is calculated based on the operat-

ing type of the job and the amount of resources requested. Medium

level scheduling based on thi- priority number chooses the running

of the job from the jobs in the waiting state;

(6) to establish and initiate the initial progress of the job

channel--job control progress. Situation concerning the job control

progress is shown in a separate paper.

VII. DEPARTURE OF JOBS

Under normal conditions when the operation is finished, the job

control progress after completing its finishing jobs issues a message

to high level scheduling to cancel this job. The job departure work

is the reverse of the preparation work before the running of the job

which will not be repeated here. The emphasis here is to discuss the

points to be aware of under the abnormal departure of a job.

When the job progressing process has a program breakdown or when

the main unit breaks down and can no longer normally coordinatively

execute to the end, the abnormal job departing problem occurs.

Because the timing of the job progressing process breakdown cannot be

predicted; therefore, the abnormal departure of jobs cannot be pre-

dicted either. Thus, the following situations may occur: the system

may have sent a request for some message to the job progressing pro-

cess. But it does not have time to process and to issue a return

message. If, at this time, this job and this family of jobs are

cancelled, then the system family will wait indefinitely for the return

message. For this, the system specially sets up a "closed message"

61

U.-

4- - ii- e -.-- S --- "-

type. The high level scheduling is issuing this type of message to

the awaiting system group to inform them that the progress has been

cancelled in order to maintain the balance of messages among them.

VIII CONCLUSIONS

The structure of the Job management of the CZXT-013 system is

basically clear. Therefore, the reliability is also high. The prob-

lem now is the efficiency of the system. As for the design of the

scheduling of computation, although we have considered various factors,

there is no feeling about which point to deal in the actual system

(hardware characteristics and usage characteristics). Therefore, in

future running, we should accumulate the relevant system characteris-

tic testing data for analysis in order to improve the present method.

62

.

MANAGEMENT OF VIRTUAL STORAGE ON CZXT-013 352

Fan Ben-Kui

(Institute of Computing Technology, Academia Sinica)

ABSTRACT

CZXT-'013 provides a page multiple virtual storage
system. This paper introduced the management technique
of virtual storage from the software point of view. It
described how virtual storage is realized from the auxi-
liary storage management, mass storage management and
page management (page fault treatment, page replacement
rule, etc.). It then discussed the efficiency of the vir-
tual storage and analyzed the effect of several prime
factors on the efficiency of the virtual storage.

I. INTRODUCTION

CZXT-013 provides a page multiple virtual storage system to the

users with a maximum of seven virtual spaces.

In order to realize the virtual storage system, a dynamic add-

ress transfer mechanism is installed in the conmtand control part of

the 013 machine. It primarily consists of: a page tablereading and

writing circuit, high speed page table storage and comparison circuit

(i.e., associative storage), page protection circuit and the replace-

ment counter and writing circuit (small table) which reflect the

utilization of main storage situation, etc. The function of this

dynamic address transfer mechanism can be summarized as follows:

(1) based on the page address transfer table provided by the

system, it transfers the virtual address given by the job into the

real address pointing towards the main storage. When the transfer

is unsuccessful, a page fault is created which is processed by the

operating system;

(2) together with the operating system, it provides the proper

protection to storage.

63

(3) through the use of a small table, it provides the sequence

of main storage page utilization to the operating system.

The working principle of the address transfer mechanism is

shown in Figure 1, where XY is the virtual page number, SY is the

real page number, JStt is the value of the replacement counter, Ga

is the corrected indicator position, D0 is the dynamic indicator posi-

tion and Z is the address in a page.

The virtual storage system CZXT-013 is realized by using a main

storage with capacity of 130,000 characters in connection with three

movable arm magnetic disc storage,each with a 850,000 character capa-

city,on the basis of the dynamic address transfer mechanism.

All the Jobs must use the virtual space whose maximum is 220

characters. The length of the virtual address is 21 digits. The

lower 9 digits are address within a page and the higher 12 digits are

virtual page numbers. The highest digit is always 0. The programmer

believes that this one-dimensional virtual space storage medium is

homogeneous and continuous.

According to the usage requirements and the presently available

hardware conditions, the virtual storage system we adopted has the

following characteristics:

(1) it provides a number of mutually "insulated" page virtual

space;

(2) the virtual space of a Job is a combination of real and vir-

tual spaces. The virtual space is used to obtain a high capacity and

the real part is used to ensure high CPU efficiency;

This paper was received on August 5, 1980 35

(3) the distribution of Job information in auxiliary storage uses

a combined longitudinal and lateral method. The longitudinal support

can use different magnetic discs to support various Jobs to reduce

I 6•

Figure 1. Scbematic diagram of the working principle of
the address transfer mechanism

l-begin to process a camuand; 2--ctpute the virtual address ICY and page address
Z ; 3-visit main storage according to SY and Z to execute the order and ready to
prepare for exsc ition for the next one; 4-foremd; 5--check the quick table?; 6-
not found; 7- page tale bounday; 8--out. of bounary interpto; 9--
take page table; 10-dcefined?; 11 -no; 1 2--yes; 13-in the internal storage?;
14-yes; 15-is the quick table full?; 16-no; 1 7--out of boundary interruption;
18-page fault interruption; 19--no; 20-full; 21--when a, ..-.a.-'. write the valuos
of J St~ according to the last ro of SY in the quick table, the Do position andthe Go position into the sMal1 table; 22--push to the next rw inthe quick table;

23- write the relevant terms of the page table read and XY into the initial row
of the quick table; 24-g9et data to operate?; 25--yes; 26-is this page a11o~d
to be read?; 27-yes; 28-no; 29--no; 30--visit interrupted; 31-;no; 32--data
writing operation?; 33--yes; 34-is this page a1lol~d to be written into?; 35-no;
36--writing interpe; 37--no; 38-yes; 39-has this page been corrected? ,
40--es; 41--place (page table and the Ga position in the quick table

mutual interference between Jobs and the lateral distribution can in- -

crease the capability of the magnetic disc to provide page space;

(4) the sch-duling of storage and the scheduling of the processor

65

tAf - - - -

are closely matched to keep the system running at high efficiency.

This paper primarily introduces how the virtual storage system

is realized from the point of view of storage management. Finally,

Initial analysis is made with regard to the efficiency of the virtual

storage system.

11. THE MANAGEMENT OF THE AUXILIARY STORAGE

The main mission of the management of the auxiliary storage sys-

tem (auxiliary storage for short from this point on) is to distribute

and release the auxiliary storage. This part of the program is a com-

ponent of high level scheduling. When the high level scheduling

selects a job from the back-up state to enter the waiting state, or

when an on-line job enters the system, auxiliary storage is distri-

buted according to the requested virtual space size. When the job is

finished with normal or abnormal departures, the occupied auxiliary

storage is taken back.

The 013 machine currently has four simultaneous arm reaching

and positioning movable arm magnetic discs. Three of them are used

as the auxiliary storage for the virtual storage system and the other

one is used as the input/output well. The technical standard of the

presently available magnetic disc is relatively low. The average

waitinT time is 750 ms out of which the vibration stabilization time

is 250 ins. Therefore, the movement of the magnetic head arm requires

a long period of time. Despite the optimization treatment with regard

to the reading and writing of the magnetic disc, the capability of

the magnetic disc to provide page space can still not catch up with

the demand of the processor on page space ,which means that there is an

apparent mismatch between the supply and demand of page space. Because

the supply demand mismatch problem of page space is an important factor

affecting the efficiency of the storage system, the management of

auxiliary storage becomes more important. Based on the characteristics

of the magnetic disc of the present 013 machine, in order to relax

the contradiction between supply and demand of page and to sufficiently

66

utilize the parallelism of the magnetic discs and to reduce the arm

movement time and distance to the extent possible, we adopted a com-

bined longitudinal and transverse static distribution method.

The so-called static distribution is to distribute the entire

requested virtual storage capacity of the job at one time and actually

locate it in the real position without considering the contraction

and expansion of the virtual space. The so-called longitudinal and

transverse combination is to use longitudinal and transverse distribu-

tion methods according to the size of-the virtual space.

(1) Transverse distribution method

Because the capacity of each zone (cylindrical surface) of the

present magnetic disc in the 013 machine is 32 K characters and the

reading/writing magnetic head arm cannot be shifted in the zone; there-

fore, for those jobs with a virtual space smaller or equal to 96 K
characters we use the transverse distribution method based on alter-

nating units using the zone as the unit and the segment as the count

(each segment has 512 characters). The jobs using transverse distri-

bution are called lateral jobs. This corresponds to providing a fixed

magnetic disc to the lateral job so that the page can be quickly

given. However, because a lateral job must simultaneously occupy

several magnetic head arms (the number to occupy depends on the virtual

storage of the job), it tends to repel other virtual jobs. Therefore,

the number of lateral jobs in the waiting and running states cannot

be too large. This system requires that the number is not to exceed

three. The matching of the lateral job with the real state job whose

virtual space is entirely in the internal storage can assure the

highly efficient running of the CPU.

(2) The longitudinal distribution method

For all the jobs with a virtual space exceeding 96 K cbaracters,

we adopted the longitudinal distribution metbod.,which uses the zone

as the unit, the segment as the count and the information Is concen-

A trated on one disc. Furthermore, the information on one disc is

j 67

stored in a concentrated manner to the extent possible. The actual

method is to first determine the unit number which always begins with

a disc with the most number of free segments. If one unit is not

enough, the unit with the next high free segment number is assigned

until the virtual storage requirement is completely satisfied. After

the unit number is determined, the block is defined. The principle

to define a block is to assign the smallest free block capable of con-

taining the entire virtual storage. If all the free blocks in the

same unit cannot accommodate it, then the largest free block is first

distributed and then followed by the second largest and so on until

the requirement is satisfied or until all the free blocks in the same

unit are completely distributed. The so-called free block is a block

formed by neighboring free zones. The jobs using the longitudinal dis-

tribution method are called longitudinal jobs. The advantage of the

longitudinal distribution method is that to the extent possible diff-

erent discs are used to support various longitudinal jobs to reduce

the interference between various jobs to facilitate the running of the

multiple path program. The concentration of information storage can

also improve the capability of the disc to provide page space.

In addition, the management of auxiliary storage can eliminate

the capability of the breakdown-segment on the disc.

III. THE MANAGEMENT OF THE MAIN STORAGE

The primary mission of the main storage system (main storage for

short from here onward) is to distribute the real storage page for the

jobs chosen by the high level scheduling. Simultaneously, it dynamic-

ally adjusts the load of the main storage according to the actual

demand to provide conditions for improving the running efficiency of

the system. In this system,the medium level scheduling is in charge

of the management of the main storage. The running of the medium

level scheduling progress is carried out at fixed times.

When a job is chosen by the high level scheduling, it only pro-

vides auxiliary storage for the job in order to establish the virtual

space and to distribute the special external equipment (e.g., a

68

magnetic tape disc). However, at this time the real storage page is

not dispatched and the state of the job is the waiting state. Only

when after the medium level scheduling dispatches a certain amount of

real storage page for a job in its waiting state, the job can obtain

CPU. At this time, the state at which the job is located is the

running state.

When the main storage load is too light, if there is a job in

the waiting state, then the proper amount of real storage page is dis-

tributed to the job so that it can transfer from the waiting state to

the running state. This distribution format is called the initial

distribution. The principle of the initial distribution is to evenly

distribute the available real page numbers to the jobs chosen by the

high level scheduling. If the requested virtual storage amount is

less than the average, then only the virtual storage amount is given.

During the process of running a job, the page needed for real

storage is dynamically varying. As long as the work batch of the Job

is ensured to stay in real storage, the efficiency of the system

can be maintained without slipping. Therefore, one of the keys to the

problem is to determine the size of the work batch of the running Job

at all times. We adopted an approximation methodwhcb based on the

page fault rate of the job -predicts: whether the work batch will expand

or contract in order to determine whether to increase or decrease

the number of real page dispatched for the job. The practical princi-

ple of page adjustment is that when the number of page fault exceeds

A*A0 the number of real page distributed to the job is increased;

where A is a constant which can also be adjusted, At is the differ-

5ence of the present value of the job clock and value of the clock of

the job when the previous page distribution took place. When the

page fault number is zero and the distributed page number is greater

than the actually occupied page number, the real page distribution

number is reduced. When the page fault number of the job is between

zero and ASA# no adjustment on the real page number distribution is

made.

tI
69

When the main storage is overloaded and several running jobs

all request increase of real page number dispatched, the system

cannot satisfy the request of work group expansion for all the jobs.

Then, the medium level schedule will order the job with the lowest

priority number to release all the real storage occupiedpto return

that job to the waiting state from the running state. The use of this

technique, in principle, can prevent the "bumpiness" phenomenon from

occurring. When these jobs deprived of real storage once again are

moved to the running state from the waiting state, the medium level

scheduling does not process them according to the initial distribution.

The distributed page number should be the deprived page number.

Whether it is an initial distribution or an adjustment of page

number, the progress of the medium level scheduling issues a message

to the corresponding job page management progress to notify the

adjustments of teal storage page. The page fault numbers, however,

are provided by the page management progress.

The distribution of real storage by the medium level scheduling

always begins with the running job with the highest priority number.

The priority number of job is determined by the high level scheduling,

based on the operating format of the job, the required virtual storage

and the duration of running time. In addition, the job running

priority number also increases with the time staying at the waiting

or running state. This type of increase is made by the medium level

scheduling. Furthermore, the operator can type in order from the

control desk to appoint a certain off-line job as a priority job.

IV. THE MANAGEMENT OF PAGES

This system can provide to the users a maximum number of seven

mutually."isolated" virtual spaces. In order to manage a virtual

space, the system sets up a corresponding page management progress.

Therefore, there are at most seven page management progresses whose

major functions are as follows:

70

(1) Carrying out page fault treatment

The simplest request type of page transfer is adopted as the

transfer principle of the virtual storage of the 013 machine,which

means that only when the page visited by the program is not in the

main storage (which also means that only when page fault occurs it is

then switched to the operating system) that the page management pro-

gress is used to process the page fault. The treatment of a page

fault can be simply described as the request of a real storage page,

and to read the content of the page with the fault in auxiliary stor-

age through the magnetic disc management progressand followed by the

correction of the page table and the corresponding term of the small

tablepand finally the liberation of the page fault progress.

(2) Scheduling the running of Jobs with the medium level scheduling

The use of real storage by the page management progress is car-

ried out under the control of the medium level scheduling. The medium

level scheduling is responsible for the distribution and adjustment of

the real storage for all the jobs. However, the page management pro-

gress provides such Job running information as the real storage page

number occupied by each job, the maximum occupied real storage page

number and the page fault number during the two initiation periods

of the medium level scheduling, etc., to the medium level scheduling,

in order to facilitate the more reasonable scheduling of the use of

real storage. In addition, it also provides some job running statis-

tical data such as the total page number and the empty product at

real storage.

(3) Processing the request for page table zone by high level scheduling
*

This request is unique to the system which is also considered as

a weak spot. This is because in the design of the virtual storage hard-
ware, for simplicity, it was decided that the page table zone of each

job in the system is individually placed in a fixed location. These
page table zones are not occupied by the system and are open to the
users when used as the page table. Hence, when the high level

71
- '*1

schedul~ing selects a job from the back-up state to enter the waiting

state and its corresponding page table zone is occupied by another

job, it is necessary to reclaim the page table zone to establish the

job. At this time,the high level scheduling progress issues a mess-

age to the corresponding page management progress to request the page
management progress to forcefully take the page table zone back.

(4~) Taking back real storage when the job departs from the machine

When a job departs normally, before termination and cancel of the

page management progress, the job control progress in the same group

issues a message to the page management progress to allow the page

management progress to be responsible for the entire real storage page
occupied by the job. When the job departs abnormally, this job is com-

pleted by the high level scheduling progress instead.

(5) Explanation of the rule relevant to the real storage replacement

The replacement rule of the real storage page is a more important
scheduling factor. Its choice has a large effect on the efficiency of

the entire system. A better replacement rule should be able to remove

pages which are not going to be used in the near future from the main
storage in time and at the right place. However, it should not remove

the page which is going to be used in the near term. This means that

a good replacement rule should be able to precisely reflect the dynamic
expansion and contraction of the job work group. However, due to the

numerous variations of the visited address space of the job on the

machine, it is unpredictable. Therefore, the variation of different

job work groups is not the same and the work group of the job also

varies with the running of the job dynamically. Hence, it is very

difficult to use a unified method to reflect the dynamic variation of

the various job work group. For that, this system uses a simpler par-

tial replacement rule. The measurement of work group variation is

done by the medium level scheduling. The so-called partial replacement

rule is to use the replacement counter (JS tt) provided by the hardware

and the usage of the main storage page to select the page which has

72

not been used for the longest period of time (i.e., the maximum JStt
value) in the real storage pages of the job to replace it.

V. ANALYSIS OF THE EFFICIENCY OF THE VIRTUAL STORAGE SYSTEM

The ratio of the efficiency iv of a machine with a certain capa-

city of virtual storage and its which is the efficiency of a unit with

identical capacity of real storage must be less than 1, i.e.,

This result is apparent from the following two reasons:

1) the search in the associative storage may not be fruitful

2) when searching the page table, a page fault may occur which

requires the changing of a disc.

There are multiple factors affecting the efficiency of the virtual

storage. We conducted some experiments on the virtual storage effi-

ciency problem. Here we performed some preliminary analysis on the

following problems.

1. To properly select the line number of the fast page table storage

* in order to reach reasonable fast table hitting ratio.

The most intuitive method to increase the hitting ratio of the

fast page table storage (fast table) is to increase the line number of

the fast table. How it requires more equipment, how many lines of

* fast table must be chosen to obtain a reasonable hitting rate? If we
use the probability estimation method, let us assume that the probabi-

lity that the address of the current visiting storage is on the same

page as that of the previous visit is 1/2 ;the probability of the cur-

rent visiting address being on the same page as the one before the

last one is 1/14; then the relation between the line number of the fast

table n and the bitting ratio P is:

P - I 35

T,3

The corresponding relation between P and n is shown in Table 1.

TABLE 1. The relation between the hitting ratio of the
fast table P and the line number of the fast table n

I 2 3 4 5 6 7 8

P 0.5 0.75 0.875 0.935 0.969 0.984 O.492 .9Q 6

The 013 machine uses an eight line fast table. We used the mon-

itor of the machine to carry out a statistical study on the hitting

ratio of the running of various types of programs (compiled programs,

BCY compiled program and the user objective program). The monitor

gave the ratio of the actual table checking number k1 and the hit num-

ber k2 :
P - k/kt

The P values for various types of programs are shown in Table 2.

TABLE 2. The actual value of the fast table hitting ratio

type 1compiled program BCY compiled program user program

P I98% m-95%: M90%

It should be pointed out that the various programs contained a

certain amount of commands which do not require the transfer of

address (e.g., change address operation, immediately accessible number

operation, etc.). Through the monitor, it was found that this type of

command was approximately 15-20%. Hence, the miss ratio of checking

the fast table 1-P is very small.

2. To provide the necessary information to reduce the number

of times in visiting the auxiliary storage.

In order to reduce the number in visiting tMle auxiliary sturage,

the address transfer mechanism of the 013 machine provides a correct-

ion indication digit. When it is operating in the data delivery mode

for a certain virtual page, the hardware automatically changes the

corresponding correction indication digit to 1 for the page table

position. Hence, when all the real pages corresponding to the virtual

74

pages with a correction indication digit 0 are replaced, it is not

necessary to rewrite into auxiliary storage because there are copies

of those pages in the auxiliary storage. The statistics for some

problems indicated that because of the use of the correction indica-

tion digit it is possible to reduce the number of times in writing

auxiliary storage by 30-40%.

3. Two important factors affecting the efficiency of the virtual

storage.

The present representative equation to evaluate the efficiency

of the virtual storage is:
nv = total processing time +

total processing time + page change waiting time + '. I -

where the total processing time is the amount of time required to

complete a job if the virtual storage system is not used, Tv is the

time required to visit the auxiliary storage once, TN is the time re-

quired to visit the internal storage once. f(w) represents the fre-

quency of page transfer from auxiliary storage in the w segment of

the program:

where r is the number of transfer from auxiliary storage during the

page visit and t is the total number of page visit.

From the above equation, it can be found that f(w) is related to

the program characteristics and the ratio of virtual page number and

real page number V/R. When v/R < I, then (w)- u, -;when V/R > 1,

then the value of f(w) increases, nv value decreases. The larger

the value of V/R then the smaller nv becomes. Hence, the virtual vs.

real'ratio V/R is an important factor affecting the efficiency of the 3'

virtual storage. In addition, it can also be found from the formula

that Tv/TN is another important factor affecting the efficiency of the

virtual storage system. The smaller the value of Tv/TN, the higher

the value of nv becomes; the higher the value of T /T is, the lower

the value of nv becomes. Now let us first discuss te effect of Tv/T

on nv.

_77 75

The parameter T v/T N is determined by the hardware. In order
to reduce Tv/TN, in some computers a multi-level storage system is

used. Between the slower auxiliary storage and the faster main stor-

age some middle transition levels are added so that the efficiency

of information transfer between the internal and external storage

systems can be improved. The technical standard of the preseng mag-

netic disc in the 013 machine is low, Tv/TN Ml0 Under this condi-

tion, the efficiency of the virtual storage system established is

indeed low. This point has already been apparent from the preliminary

operation of the machine. Just because the value of T v/T N has such

a large effect on n V, people have the misunderstanding that when the

TV/T N value is high a virtual storage system cannot be established.

We believe that such a conclusion is biased to some extent. This is

because the nv described above is obtained through a comparison between

time spent to process a job using the virtual storage system and that

to process the same job using a real storage system of the same size.

This comparison was carried out using the machines with different hard-

ware equipment. We believe that in designing a machine the visiting

cycle of the auxiliary storage and the main storage should be a given

condition. If this condition does not change and if the virtual

storage system is not used, then when the occupied space of a job is

greater than the capacity of the real storage,the user must have a

more complicated coverage processing technique to manually materialize

the information exchange between the main storage and the auxiliary

storage. However, this exchange is similarly affected by T v/TN

Therefore, when discussing the effect of T v/T N on the efficiency of

the virtual storage system, it has to be stressed that the comparison

should be carried out under identical conditions; i.e., a comparison

must be made with regard to the times spent on the same job using

manual scheduling and automatic scheduling (virtual storage) under

the conditions of identical main storage capacity and visiting cycle

as well as identical auxiliary storage capacity and visiting cycle.

We conducted such an experiment using both the manual scheduling

and the automatic scheduling methods to compute the same problem in

order to compare the time to process the same job based on two differ-

ent methods to evaluate the efficiency of the virtual storage system.

76

The computational process of the problem is to first form a 500,000

element matrix and then to carry out computation for the above matrix

using an element elimination method. In addition, the lateral cumula-

tive sum of the matrix is obtained. After the element elimination

calculation, the cumulative source of the matrix in the longitudinal

direction is obtained and compared with the transverse cumulative sum

to indicate whether the results of the computation is correct.

During manual scheduling, due to the limitation of the main stor-

age, the matrix was divided into several submatrices and stored in the

disc. They were transferred into internal storage for processing.and

then re-connected together. The program used the characteristic that

the magnetic disc transfer and computation can be carried out simulta-

neously.

During automatic scheduling, because the virtual space is one

million characters, the user flatly expanded the original data. After

expansion, the element elimination started from the beginning and the

lateral sum was added. This computational method required the re-

peated transfer of data from beginning to end. The localization of

the program is poor. Hence, the condition is stringent with respect

to the evaluation of the efficiency of the virtual storage system.

The experimental results showed that to complete this job using

manual scheduling took eight months while it took 17.5 minutes to do

it with automatic scheduling. From these experiments, it was found

that under the conditions of identical hardware, even though the tech-

nical standard of the magnetic disc is poor, the use of virtual stor-

age will require longer Job running time than manual scheduling. How-

ever, it is too long for the users to bear.

Now let us discuss the relation between the virtual vs. real ratio

and the efficiency of the virtual storage system. The V/R value 35

gives the ratio of the virtual storage capacity vs. the real storage

capacity of a job. It is also called the virtual/real ratio. If

V/R 41, it represents that the main storage is larger than the needed

* virtual storage and it is not necessary to use the information in the

77

- T v
4] El?] -C!"

4) / P%
I
I

Io ' II .~

1.0 1.2 1.4 1.6 V/t

Figure 2. The relation between V/R and m, T, nv

1--number; 2--minute; 3--400 times; 4--20 minutes; 5--5 minutes

auxiliary storage. Therefore, the nv = 1 at this time. If V/R > 1,

it represents that some of the pages of the job are not in the main

storage which must be transferred into the system from auxiliary stor-

age. At this time, nv < 1. The higher the value V/R becomes, the

more frequent the number of auxiliary storage visits becomes and the

smaller nv is. When V/R >> 1, due to the excessive number of disc

changes, the efficiency of the virtual storage system is drastically

reduced. It must be Dointed out that the disc change number and the

V/R ratio are far from direct proportionality; it is related to the

running characteristics of the problem. The same virtual vs. real

ratio for various programs may cause a huge difference in the disc

changing times.

Specifically with respect to the relationship between the V/R

value and the efficiency of the virtual storage, we performed some

experiments. The relationships of the V/R value of a problem running

on the 013 machine with the number of auxiliary storage visits m, the

time to solve the problem T and the efficiency with virtual stage nv

(assuming when V/R - 1, nv - 1) are shown in Figure 2.

From Figure 2, it can be found that there was a "turning point"

in the corresponding relation between V/R and n The value of the

turning point is greater than 1.

I7

1) When the V/R value is smaller than the turning point, nv

approaches 1. This shows that the virtual storage system can indeed

provide the users a storage space larger than the real storage space

u'dei- the assurance of the efficiency of the processor.

When the V/R value is greater than the turning point, the

i lave significant pages not in the main storage. Therefore, the

n oer of auxiliary storage visits increases and nv drastically de-

cyeises. This is another important characteristic of the virtual stor-

age system. It should be pointed out that the position of the turn-

ing point is different for different problems. The position depends

on the size of dynamic variation of the work group of the problem.

Therefore, it is necessary to ask the users to have a correct under-

standing toward the virtual storage space. If a Job has a larger vir-

tual storage space but the localization of the program is better, then

it is still possible to run efficiently. On the contrary, if the

users assume that the relation between time and space remains the

same as using the main storage in the past after using the virtual

storage system, then it is highly probable that the time-space relation-

ship of the virtual storage system may be destroyed to cause an appar-

ent decrease in the efficiency of the virtual storage system.

VI. CONCLUSIONS

The virtual storage system we materialized in our institute is

the first one. It is also one of the earlier ones in the country.

Due to lack of experience, an attempt was made to reduce the equipment

to the extent possible to realize the virtual sto~age system from the

hardware point of view. Therefore, its function is not perfect. There

remain inconveniences in the software conditions. From the point of

view of the software, due to the limitation of the hardware, the most

obvious problem is the supply and demand mismatch problem of the

page space. The virtual storage system established on this basis has

low efficiency. The experiments conducted with respect to the analy-

sis of the efficiency of the virtual storage system were still coarse

and need further refinement.

7.4

• A

It should be pointed out that Comrade Li Shuyei has done a great

amount of work on the analysis of the efficiency of the 013 machine

during and after the process of realizing the virtual storage.

REFERENCES

[1] Lin Kuoyen, Li Sbuyei, Fan, Ben-kui, "With regard to the virtual
storage system of a machine", Status of Electronic Computers,
1978, 12.

'0

-, 80

INPUT/OUTPUT MANAGEMENT OF CZXT-013 361

Li Zhi-cneu, Gu Yu-Qing, Zheng Li-Jun and Zhao Wen-qin

(Institute of Computer Technology, Academia Sinica)

ABSTRACT

The input/output management of the CZXT-013
machine is divided into two parts, i.e., the
logical device management and the physical device
management. This article emphasizes the intro-
duction of the logical device, format process-
ing and device management and their correspond-
ing characteristics.

I. INTRODUCTION

The input/output devices of the 013 machine consist of four

magnetic discs, eight magnetic tape drives, four photoelectric paper

tape input devices, four wide width printers, two paper tape punches,

two keyboard symbol displays (user display, monitor dispiay), one

graphic display and one electrostatic printer. With the exception

that the magnetic discs are working under the control of the magnet-

ic disc channels, the others work..'. under the control of the exchanger

channels.

The major tasks of the input/output management are:

(1) to provide the users with 4 simple,clean,good environment

convenient in use, simple and flexible in operation and safe and reli-

able. This system realized these requirements through the concept of

leading logical devices;

(2) to carry out format processing according to the user job and

the internal input/output requirements of the system,to complete the

information exchange inside and outside the machine, to facilitate

communication between man and machine.

(3) to actually manage the physical devices in order to effect-

ively use the hardware resources. 4
4

81I .

The following is an introduction to some of the considerations

and corresponding characteristics of the three areas.

II. THE USE OF LOGICAL DEVICES

In order to make the user program relatively independent of the

actual physical devices, in order not to cause a great difference in

use due to the different characteristics of the actual external

devices, and also in order not to change the user program because of

changes in the external equipment, we brought in the logical device

concept as the virtual expansion and reform of the actual physical

devices. The logical devices we introduced have the following char-

acteristics:

(1) Each logical device is expressed by a device number. Each

user job can use 32 device symbols, the numbers are from 0-31. Thus,

the generalized input/output commands or the keyboard instructions in

the user program have a unified format so that it is easy to memorize

and easy to use.

(-) The use of the logical device is similar to the use of docu-

ment which means before the use (read, write, transfer, etc.), it is

necessary to carry out a definition step through the open command in

order to determine the device type. After use, it is released through

the close command. Obviously, the closed device symbol can be re-

This paper was received on August 5, 1980 362

opened if necessary (notice that any type of device can be defined at

this time).

(3) The definition and release of the logical device and the read-

ing and writing of thc, logical device are carried out independently.

In general, the former is carried out through keyboard commands and

the operating manual commandswhile the latter is directly arranged in

the user program according to the requirements. Thus, before use, it

282

is possible to change the device type at any time through the key-

board command or by modifying the operating manual. It is not necess-

ary to change the user program itself. Therefore, a certain extent

of flexibility and reliability can be assured.

(4) Due to the fact that it is expressed by four digits, the type

of the logical device can include 16 different types. This facili-

tates the expansion of new types of external devices. Some of the

main device types are:

(1) A certain physical external device (e.g., on-line printing

and on-line hole punching, etc.);

(2) a combination of several devices (e.g., several paper tapes

to form a paper tape document);

(3) a group of information on the magnetic disc or magnetic tape

(e.g., input Qicument, output document, disc document, magnetic tape

document, etc.);

(4) the transfer between devices (transfer between the discs and

tape devices or transfer between the disc/tape device with the printer
and hole puncher);

(5) expansion type device: the system, in order to facilitate

the expansion of ne"' types of external devices, designs this type.

However, the users are still provided with the pressurized code sym-

bol of tbe corresponding device and the system cenrtrally converts

into the expansion type device. The expression type device is ex-

pressed by the progress number of the device management progress.

The keyboard symbol display and the optical pen graphic display of

the system both belong to the expansion type devices. The expansion

type can correspond to different types of output devices simultaneously

(for example, the printer and the display can be simultaneously used

as the output).

33

(5) the management progress relevant to the logical device

belonge to the job family where the index progress is responsible

for the definition and release of the logical device. The read pro-

gress and the write progress are responsible for the format process-

ing of the reading (input) and writing (output) of the logical device,

respectively. The basic document progress is responsible for the

checking of the type of the logical device, the establishing of rela-

tionship between the logical device and the actual device management

progress (according to the type) and the transfer control of the read/

write printer management and the device. It is the actual connection

between the job and the system;

(6) the description of the logical device is realized through

two tables. One is the user file display (UFD) and the other one is

the partial user file display (PUFD). The length of the UFD table

is 32 units. Each unit corresponds to a device number which is used

to record the type of the logical device, the relevant read/write

characteristics and the pointer of the PUFD table, etc. The length

and the structure of the PUFD vary with different devices. Some

devices (such as the on-line printer, on-line hole punch and transfer

and expansion types, etc.) do not have a PUFD which primarily record

the read/write pointer of the actual device and its manual;

(7) the errors which occur when using the logical device are

reported to the corresponding job management progress which then re-

quests the writing document monitor progress of the corresponding job

to enter the erroneous message into the monitor document. When leaving

the machine, it is printed on the printer. For on-line jobs, it can

be sent out of the machine at any time.

III. PROCESSINGS OF FORMAT

During the input/output process, if the information remains un-

changed, it is called a formatless transfer. On the contrary, it is

called format processing reading or writing. The considerations

regarding format processing in this system are:

84

(1) the paper tape is the main method for the input of the

original data and programs from the user. In addition to the pro-

cessing of information according to the format table to enter the

input table, for the convenience of the users a simple and intuitive

set of paper tape input format language has been specially designed

to allow the users to write the paper tape message in their customary

way.

The paper tape input format language is divided into information

format and control format. Before each sentence there is a correspond-

ing <format symbol>. For the information format, the format symbol 36:
indicates the type of the information (such as integer number, floating

number, octal number, symbol series and command, etc.). The series

of information which follows is basically expressed according to the

customary way. For example, with the exception of a symbol series, the

information is separated by the sign ; . For the control format, the

format symbol represents the control type which is followed by the

corresponding parameters (such as the address of processed information,

repetition number of the information, the automatic starting address

after the paper tape output, etc.);

(2) a basic format character system has been designed primarily

to compile printing or display the output ifraon,bu it is also

applicable to other output devices and even possible to store back to

the internal storage the output information after input processing

using the same format table (except for printing and display output).

The closed loop characteristic of input/output has been realized.

The user program can compile the nerded corresponding format chain
during output or directly use the regular format code (the pre-compiled

format chain in the system) provided by the system. The address of

the output information is usually given by the address chain. Each

address character in the address chain points out the internal memory

address of the output information and its length. The address of .the

output information can also be given by the basic format character

(instant address or instant symbol).

~i~j _ _ _85

The basic format character occupies an internal storage element

which is essentially divided into information format and control
format,each with 32 types of formats. The information format indi-

cates the type, width, significant figure and information source of
the output information. The control format indicates the compila-
tion form (blank row, blank space, position fixing, rotary printing,
column printing, etc.) of the output information, the motion control
of the format chain (such as format transformation) format repetition,
format rotation, format return, etc.), and other format explanations.

This set of basic format system has the following characteristics:

(1) it allows the insertion of a segment of programs in the for-

mat chain or address dbain to change the direction of motion of the
format or the address chain by the result of the running of the pro-

gram which provides some flexible method for editing relying on the
input/output character chain;

(2) the output format processing is carried out in two steps.

The first step uses a unified processing procedure to carry out the
processing (semi-processing) to produce the intermediate result. The
characteristic of this processing step is that it does not depend on
the device type. The intermediate result of the semi-processing step

has a standard model which is suited for any device management progress.
Most of the format processing is accomplished in this step in which the

information format transforms the internal storage information into
output symbols and some control formats are transformed into the
corresponding format explanation sentences. The second step of pro-
cessing is carried out independently by the device management progress
which transforms the standard intermediate results into the output
results of the various corresponding devices. The step of processing

usually has different interpretation with various devices. Some

p devices (such as magnetic discs, magnetic tapes, etc.) directly use
the intermediate results as the output results (discs and tapes).
Some devices (such as printer , display, and electrostatic printer)

V must transform the format explanation sentences into output symbols

86

2*Na

to complete the processing job. The paper tape hole puncher only

performs some analysis on the intermediate result and punches holes

in the paper tape as the output;

(3) the semi-processed intermediate results are described by the
semi-processed format language whose form is as follows:

YC <alphabet> <explanation> YR
when YC is the exit symbol whose code is (8) 17; YR is the enter sym-

bol whose code is (8) 16; <alphabet> is a format explanation type;
<explanation> is a series of characters expressing the content of the

explanation and parameters.

In this set of semi-processed format language, with the exception
of the symbols YC and YR, each character symbol belongs to the region
of symbols which are suitable for output in order to facilitate the
printing and hole punching for the convenience of independent testing;

(4I) the intermediate results directly recorded on the disc, tape
(magnetic) and hole punched paper tape can be processed on the reverse
direction by reading to return the semi-processed results to the orig-
inal internal storage information to realize the close loop character-
istics of read/write;

(5) due to the lack of experience, there are still many short-
comings in the semi-processed intermediate language such as the pro-
duced intermediate results are still very long. However, the separa-
tion of format processing still has its advantages especially when the
device itself has some processing capability. At this time, the
second step of processing can be accomplished entirely by the device;

364L
(6) the communication information with regard to the job group

in the system is processed by the writing monitor document progress.
* The provided format system is the basic format character system whose

processing type is similar to the one in the writing progress. The
communication information relevant to the system group in the program

of the system, especially the breakdown notification information of the

device management progress whose position is placed on top of the

87

level of the writing monitor document progress~can no longer be pro-

cessed by the writing monitor document progress. It can only directly
notify the monitor display output progress and breakdown printing pro-

gress to request for an output notification. At this time, a pre-
determined format is used to reflect all the information and its
corresponding format in the message.

VI DEVICE MANAGEMENT

Basically, this system has three types of devices: virtual device
(input/output well), magnetic disc device and exchanger devices

(such as magnetic tape, paper tape input, printer, bole puncher and
display, etc.).

1. The management of a virtual device

In order to raise the efficiency of the system and to reduce the
cycles in problem solving, the system provides an off-line input/out-

put form pseudo off-line input/output form) in addition to the on-
line input/output form.

The so-called pseudo off-line input/output form is to leave a
certain amount of space (approximately the capacity of one disc) on
the magnetic discs as the input/output well. The user can input

paper tape information through the escape entering command into the
well to form a well-entered document. When the job is executing a

sentence, it can be directly read from the well. Similarly, the out-
put information can also be recorded in the well. When necessary,
by going through certain commands or when departing from the machine,
the well output document can be unloaded to an output device (printer,

bole puncher, electrostatic printer, etc.). The advantage of the
pseudo off-line input/output form is that it sroothes the input/

output flow to replace the slow speed special equipment by the fast
* speed shared device for convenience and high utilization rate of the
* devices.

The management of virtual device is mainly the distribution and

management of the well zones. The system has a well zone distribu-

tion and exchange progress and a well zone inquiry and retrieval

progress to be responsible -for the distribution, exchange, inquiry

and retrieval of the well zone. The connection in the well zones

is the implementation of the well address chain. The lead of the

well address chain establish some relation with the corresponding

device symbol.

2. The mangement of the magnetic disc device

This system is equipped with four magnetic discs; correspondingly

there are four disc management progress to be responsible for the

management. Because the magnetic discs are used not only as the

auxiliary storage of the virtual storage and the input/output well

of the system, but also it opens a certain amount of space directly

to the user programs as external storage (including archive documents);

therefore, the magnetic discs have a unique address in the system.

But because the moving speed of the magnetic head arm of the magnetic

disc is slow, in order to reduce the number of times of arm lifting

and the movement distance to the extent possible, the system especially

sets up a disc read/write control progress to be responsible for the

optimization of arm lifting. The optimization method used now is the

scanning optimization method,which lines up all the read/write requests

according to the seouence,and the rule to respond to a read/write

request is that the closed zone to the forward direction of the motion

of the magnetic head arm gets processed first. Thus, the magnetic

head arms sequentially process the read/write requests until there is

* no more request in the forward direction)then it changes direction

*and begins to process the read/write requests similarly. It scans

back and forth untilall the requests in line are processed. This

optimization process is simple and highly efficient. Each read/write

request can obtains a response in time.

3. The management of the exchanger device

This type of device is the main input/output device of the 013

machine. Its obvious characteristic is that it is directly related

89 4

- - -----i -

to the operators or users. The management progress related to this

type of device is divided by its usage. The same device can be shared

by many progresses. As a few examples, the paper tape input device

is divided into the paper tape lead progress, the paper tape linkage

progress and the paper tape escape entering progress; the printing

output device is divided into the on-line printing progress, the off-

line printing progress and the breakdown printing progress; the dis-

play device is divided into the display input progress and display out-

put progress, etc. In order to handle the competition for the exter-

nal device resources by several progresses, the system gives each

subchannel and each device with a corresponding signal quantity (its 365

initial value is 1). When a certain progress needs a certain sub-

channel of a device, it is ruled that the u..-e right to the device

is determined first and the right to use the subchannel is decided

later. Only when permission is given, then it is allowed to be used.

Once the permission is granted, it practically is exclusive to the

progress before the release. When the usage reaches a stage (such as

printing one line, reading the paper tape into a buffer zone) or the

usage is complete, the right to the subchannel is released first in

order to free the subcbannel and other device channels and finally

the right to the device is released. This type of competition and

release are realized through the operation of the corresnonding signal

quantity P or V.

The operation of this device often requires people to accomplish

(such as the loading and unloading of the magnetic tape and paper

tape, the changing of printing paper, electrostatic paper and the

paper tape and the transmission of the display keyboard command).

Therefore, when designing the function in use, it is not only necess-

ary to consider the highly efficient usage of the devices, but also

the convenience of operation by people and ease of identification.

The basic function of this device management progress is to be

responsible for the distribution oi the actual equipment, to formulate

the channel control character chain, to start or to stop the device

V. and to process the interruption of the corresponding subchannel and to

90

-- - - - - --

interfere with the interruption. When the device breaks down, it

carries out breakdown notification and processes the replacement of

the broken down device.

The distribution of this type of device varies with the device.

The selection of the magnetic tape drive and the paper tape machine

is resolved by the coordination of the users. The users choose the

usable equipment directly and then reaction is established between
the magnetic tape number or the paper tape name and the corresponding

unit number. Some devices (e.g., user display, optical pen graphic

display, etc.) are fixed for on-line job use. Some of the devices are

fixed for off-line output use (e.g., the electrostatic printer, etc.).

As for the other devices, when the number of the usable devices are

relatively adequatetbe static distribution is used to the extent

possible to allow the on-line job to enjoy some of the devices (such

as the on-line printer). Only when the usable devices are not suffi-

cient is the dynamic distribution used. At one moment, the on-line

form is .used and in another moment, the off-line form is used. In

this case, we must consider the completeness and identification of the

output information.

Due to the special characteristics of the devices, the management

progress of each device has its own special considerations. For

example, in the case of paper tape input, we must consider the select-

ion of the information segment name and the processing of changing

disc across a drive unit. For display output, we must consider the

division of the display screen. For the magnetic tape, we have to

consider the tracking and checking of the position of the magnetic

head. For printer and display output, we have to consider the process-

ing of the pre-determined format.

V. CONCLUSIONS

The system has taken into consideration the irrelevance of the

device; .therefore, the structural layers are more clear, its reliabi-

lity is high and its adaptability is strong. However, because the

completion of one read or write request must require the transfer of

relevant read or write messages between several progresses (single

initial read or write message, multiple continuing read or write

message, single terminal read or write message), the message must be

processed twice. The adopted method is the single buffer technique

(512 elements); therefore, the tran-mission efficiency is low and the

processing time is long. In addition, these messages are transferred

between the jobs and the system. If some jobs require to carry out

real time interference (such as the restarting of the job, the tempor-

ary halting of the input/output operation, etc.) or require the wait-

ing of the return message between different groups, the response is

slow and the realization is difficult.

In summary, the system needs to be under operation for a period

of time to discover problems in order to further perfect and improve

the system.

Ii

- -2-

AD-A122 743 JOURNAL OF COWIUTESS ISILICTID ARTICLIS)(U) FOEIONi 2')-
TECHNdOLOGY OIV WRIGHI-PAtruSOm APO ON 8 LIU 1T AL.
14 OCT 02 PTOIOERS)I-V36g-62

UNCLSSFID AQ9/ NL

71

ilo -t -, I8

III111 I nlll___il1.6

1.25~ 1 11. 6
111.5 11111.4 1111=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BvREAU OF STANDAROS-1963-A

4,

I I -

CZXT-013 TESTING AND DEBUGGING 367

Liu Guo-hen and Cai Chun-lei

(Institute of Computer Technology, Academia Sinica)

ABSTRACT

In this paper the valuation between the relia-
bility, and testing of the operating system is
first discussed. Then, the emphasis is placed
on the introduction of the testing method of the
operating system of the 013 machine and the two
testing tools, the process tester and the system
monitor, which are used in the unit testing phase
and the integration testing phase, respectively.
The process tester is a common testing program
for the testing of the process module block.
The system monitor is an information collection
and output program added on to the system con-
trol center.

The operating system is large scale system software; its accuracy

and other software is affected by factors such as its scale, complex-

ity and the standard and experience of the developing personnel. Most

probably it cannot be assured to be error free. In addition, the

characteristics of the operating system itself also have some negative

effects on its accuracy. One reason is that the system is concurrent,

which means that the system has the characteristic of handling many

things simultaneously. Another reason is that the system cannot be

described in any formwhich often causes the description of a problem

to be vague and unprecise. These factors all have a negative effect

on the accuracy of the system in which the concurrency of the system

has the most influence on the accuracy of the system. It, on one

hand, makes the system use a working format which is not customary to
people--serially and sequentially considering and processing the

problems. This gTeatly increases the complexity of the program.
On the other hand, due to parallel working, the processing

of various Jobs is a synchronous which may cause errors related to time.

The frequency of this type of error is low and the conditions to

reappear is very difficult to re-establish. Therefore, it brings

great difficulties to the tesing and correction of the program.

93

-O ?

At the present moment, the accuracy of the program of the entire

operating system cannot be formally or informally verified. It is

also not possible to check out by an automatic technique. Under

these conditions, as a method to discover and correct program errors,

testing is the basic important technique to assure the reliability of

the system. Hence, the selection of the testing method, testing pro-

cedure and testing tool determine the assurance of the reliability

of the system. If the proper selection is made, then testing is fast

and thorough which saves manpower and materials. Most of the errors

are eliminated in the testing stage. No more or very few defects

remain in the system. If,on the contrary, it not only wastes manpower

and materials* but also the reliability of the system is hard to assure.

I. TESTING METHOD

When selecting the testing method for the operating system of

the 013 machine, we considered the st-uctural characteristics of the

system and chose a specific testing method and determined the testing

procedure and equipped with the testing tool. The CZXT-013 is a

layered system using the process module block as the major part. The

system has eight layers including the nucleus. Each layer is further

divided into several levels. The nucleus layer provides the process

running environment. Program modules are used for running. The other

layers have their program modules in the process module blocks of the

process running form. The entire system has approximately 30 process

this paper was received on August 5, 1980

module blocks and they occupy about 90% of the program. Therefore, 361

the testing of the process module block is the major task of system

testing.

With the exception of the interruption processing program in the

nucleus layer of the system, the programs are all original language

processing program module blocks. The functions of these module blocks

are independent, the connections are standard and the module blocks

are related according to the layer relation. The amount of programm-

ing in each module block is small. On the average there are over 60

914

instructions. Therefore, the testing of the nucleus layer program

uses a testing technique which is compatible with the structure by

layer and block. There is no special testing tool needed.

The large amount of process module blocks in the main body of

the system has the following characteristics. The first is that the

functions of these blocks are independent and complete with a certain

degree of independent running capability. Hence, if the proper ini-

tial environment of the process operation is created, they can be

tested individually. Secondly, these processes collaborate with one

another and among them there is a certain constraint relation which

is realized through testing with various original languages (such as

control language, resource language, communication languag,,etc.).

Thus, in order to carry out individual independent testing with each

process module block, in addition to the need for an initial environ-

ment, the proper external conditions are also required. These exter-

nal conditions are concentrated in the original language of the test-

ing results.

With respect to these characteristics, we used different testing

methods and testing tools in the unit testing phase and the integration

testing phase. In the unit testing phase, we designed a common test-

ing program--the process testor to carry out testing with each process

module block separately. Because each module block was compiled diff-

erently with various progress, there is a difference in the expected

time. Therefore, the unit testing sequence does not fellow the layer

sequence. Once a block is prepared, it is tested. It is also possible

to test a number of blocks alternately. In the integration testing

phase, we designed a system monitor to be attached to the nucleus layer

program to monitor the integration testing process. The process
module blocks which have been unit tested are sequentially brought
into the systemusing the nucleus layer program as the center. When

a process module block enters the system to be integration tested,

the collaborating process module blocks, especially the inner layer

process module blocks which provide service functions to it, have
entered the system and performed integration testing. Thus, the test-£
ing personnel can concentrate effort on the tested module block.

95

A_.. T - "

Basically, no effort will be spent on its operating environment.

II. UNIT TESTING TOOL--THE PROCESS TESTOR

The process testor is a testing tool used to carry out unit test-

ing in the CZXT-013 machine,wbich is a common testing program. The

purpose of its establishment is to reduce the number of testing pro-

grams to the extent possible under the assurance of testing quality

to facilitate the testing of every process module block. The process

testor has the following functions:

1. It simulates all the language capabilities of nucleus layer.

The real capability of the original language in the nucleus layer is

not suitable for unit testing use, therefore, it needs qualification

and simulation such as the process control language, etc.

2. It provides initial environment to the operation of the pro-

cesses. If necessary, it is possible to provide the unique initial

environment for the operation of the process according to the initial

reserve program given by the testing personnel.

3. It uses the testing data provided by the testing personnel

to simulate all the activities of the collaborative processes in order

to establish the dynamic working environment for the tested process,

such as the simulation of information exchange between processes, the

values of the commonly shared data zone or buffer zone and the simula-

tion of various functions of the external devices.

4. In addition to the simulation of the communication language,

it is possible to compare and verify the information originated in the

process with the expected one.

5. It has an output function. It can print out the testing lang-

uage, process message, process and work space contents of the tested

process.

96"ii

i I J ~ t W ! k S D ll ,

6. It can process the attached "observation" language attached

to the process testor. The user can place the "observation" lang-

uage in the areas of interest in the testing program. When the pro-

gram is executed to the observation point, the testor can output the

data of interest.

The working principle of the process testor is briefly described:

The testor carries out the usual preparation work for the tested pro-

cess operation, such as clearing the storage and preparing for the

input of language simulation program, etc. Then the initial prepara-

tion program (this is the only program to be compiled) prepared by

the testing personnel provides the working parameters such as measured

data position, process working area position and so on to the tester.

If there are unique requirements to the initial environment of the

process, they are also prepared by this program. Afterwards, it is

shifted to the tested process. This means the beginning of testing

for the establishment and starting of the tested process. In the

execution of the process under testing, whenever an original language

was executed, the control would switch to the corresponding simulation

program of the tester. At this time, output of the original language

name, position and parameters can be obtained. It also compares the

parameters of the language with the testing data provided by the test-

ing personnel and the results are also available from the output.

After the output, it begins the simulation of original language func-

tion. If the original language has a return message, then the pro-

vided testing parameters are returned to the tested process. At this

point, an original language simulation is complete. The control returns

to the tested process to continue the execution. It is repeated until

all the testing data provided by the testing personnel are completely

I " used.

The use of the process testor to carry out the process module

blocks can minimize the work in the compilation of the testing program

to the extent possible and the effort of the testing personnel can be

placed in the selection of testing data so that the program testing is

more thorough. The tester can automatically and continuously change
the testing data and verify with the testing results to further automate

97

the testing process. Thus, it not only does not require the testing

personnel to compile the testing program, but also avoids the manual

operation of the testing process. The tester collects, arranges and

outputs the input testing data and the testing results produced

during the testing process according to the requirements of the test-

ing personnelpautomatically thus avoiding the omission of any relevant

information due to lack of consideration and operational error in the

manual testing,whicb is also beneficial to the analysis of the testing

results afterwards. The process module blocks do not have to be

altered during testing by the tester. The qualified module blocks

after unit testing can enter the system to carry out integration,whicb

makes it possible to avoid the complicated procedures and possible

error by the testing of a program from a running state to a testing

state, and then back from the testing state to the running state.

Test results showed that the application of the process tester

has reached the projected objective. It basically avoided the compila-

tion of testing program under the provision of assurance of the test-

ing quality to save the testing time and to speed up the testing pro-

gress. For those module blocks with complicated relations with the

external and a lot of programming, the results were more obvious.

III. INTEGRATION TESTING TOOL--SYSTEM MONITOR

The purpose of carrying out an integration testing of the system

is to check and verify the dynamic constraints between the processes

and the accuracy of the information exchange. In such a highly devel-

oped system, it is very difficult to determine the breakdown situation

and judge the source of error without an effective4integration test-

ing tool. The structure of the system adopted some standardizing pro-

cedures with respect to the module blocks. The interaction between an

independent component process and the environment (the system and its

components) of the system is realized by the original language. The

use of original language must go through the two connecting programs--

the inlet module block and the exit module block. In order to facil-

itate system integration testing, we specifically installed a system

monitor to effectively monitor the running of the system and to

98

.. . 4 . ,

reflect the collaborative processes and the information exchange

situation.

The system monitor is a set of information collection and output
programs attached to the system control center which is the process
scheduling module block and the inlet/outlet module block. It can
collect and output the following information:

1. The creation, extinction and most of the state transition of

the processes

2. the access to the central processor by various processes

3. the communication and relevant information between processes

4. the access to storage resources by the various processes

5. the use of the system by the user programs

6. the use of external devices of the processes and their cor-

responding channel programs

7. if necessary, the monitoring of the alternate use of the module

blocks in the nucleus layer.

Due to the fact that the monitor is attached to the central con-

trol of the system, as long as the system is running the monitor is

effective. In order to facilitate the operation, the start and stop

*of the monitor and the monitoring of specific process or all the pro-

P cesses can be controlled through the monitoring desk. The system

monitor does not affect the normal operation of the system except for

the "clock" of the system. It does not influence the interaction

between the processes. The monitor itself is a close looped system.

It has its own independent function which does not rely on the system

being tested.

i -

A_!

In the integration testing period, in addition to the use of

the system monitor, some simple and routine testing tools, such as
the random printing of the process scene program, the sampling of
the internal storage element and the random printing of the program,

etc., are used as auxiliary methods. The random printing of the
process scene program can be carried out based on the program or at

the request of the control desk under the condition that it not affect the
work of the system. The storage content, work space content especially

used by the process, the buffer zone content and the information

related to control in the process control block of the specified
process are printed.

The use of the system monitor brought a great deal of convenience
to integration testing. The usual connecting problems between process
module blocks can be identified or show obvious clues through the use

of the system monitor. Because the most important and commonly used
communicative form is the information buffered ccamzdncation , the
system monitor has a function to monitor the communications. The moni-
toring of messages can more objectively reflect the sender, the sender

position, the receiver and the content of the information. This is
very beneficial to the Judgment of the nature of the error, erro-

neous process and erroneous position.

As a testing tool, it is required to be simple by itself to reduce
change to the system to the extent possible. Therefore, the

monitor cannot have the function to go backward. It simultaneously
releases the collection and processes the output. Therefore, It has

the shortcoming of large output. For errors occurring after the
system has been running for a while, the address coincidence stop
method is used to get near the erroneous region. Then the monitor is
started to reduce the output information. To give the monitor the
added time reversal function will be beneficial to the discovery of

time-related errors, to reduce interference to the "clock", to

compress the output information and to further improve the effect of

the monitor.

100

-,--- i_- -

The process testor and the system monitor are very effective in

the testing of the system. They are very satisfactory testing tools.

After the unit testing, the process testor basically has accom-

plished its historical mission and is no longer used. The system

monitor and other testing tools still remain in the system in the

trial computation and maintenance process so that causes of problems

can be found immediately to rapidly eliminate breakdowns.

II

10

101

- - -- --. - "-

